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Abstract 

A nanocomposite is a material with a nanoscopic size of 10-9m formed from a 
combination of two or more different materials that have the properties of blended 
materials. Surface modification of zinc layered hydroxide-dodecyl sulphate-isoprocarb 
(ZLH-DS-ISO) nanocomposite with chitosan and cellulose acetate was studied, and 
so is their release behaviour. A powder X-ray diffraction (PXRD) pattern for the 
intercalation peak showed a d-spacing value of 3.31 nm for both ZLH-DS-ISO 
nanocomposites coated with chitosan and cellulose acetate. The FTIR spectra of 
coated nanocomposites showed the existence of both chitosan and cellulose acetate. 
The controlled release of ISO from ZLH-DS-ISO nanocomposite coated with chitosan 
showed slow release compared to ZLH-DS-ISO nanocomposite coated with cellulose 
acetate. The kinetic behaviour of ISO from ZLH-DS-ISO nanocomposite coated with 
chitosan is governed by first-order for Na3PO4 solution and parabolic diffusion for both 
Na2SO4 and NaCl solutions. Meanwhile, the kinetic behaviour of ISO anion from ZLH-
DS-ISO nanocomposite coated with cellulose acetate follows a pseudo-second-order 
for all Na3PO4, Na2SO4 and NaCl solutions. These polymeric coated nanocomposites, 
consisting of organic-inorganic nanolayers, showed enhanced release performance 
compared to uncoated nanocomposites. This study will be beneficial in promoting a 
good work environment by ensuring the safer use of insecticide by workers and users. 

 
Keywords: Nanocomposite; controlled release formulation; chitosan; cellulose 

acetate; surface modification 

Introduction 

Surface modification of organic-inorganic nanocomposites has attracted a lot of 
attention because it offers an interesting integration and improved interface between 
nanoparticles and other matrice[1-5]. [1] Lallo et al. used (3-glycidyloxypropyl) 
trimethoxysilane as a surface coater for ZnO, and the results showed that the smaller 
ZnO nanoparticle had better antibacterial activity. To modify nanomaterials and 
nanoparticles, inorganic metals such as silica and noble metals, small organic 
molecules such as citric and oleic acid, and organic polymers such as chitosan and 
dextran were used[6]. Among them, polymeric nanocomposites have been widely 
studied in controlled release applicationsDextran, chitosan, carboxymethyl cellulose, 
ethyl cellulose, poly(ethylenimine), and poly(ethylene glycol) are common polymers 
used as coating material[7-11]. Above all, chitosan is often chosen due to its 
biocompatible and biodegradable natural polymer, which forms a viscous liquid when 
solubilized in acid. Moreover, because of its abundant source and low price, it is 
suitable for commercial applications[12-14]. 

Polymer coating materials for pesticides are commonly applied in controlled 
release formulations. Biodegradation of polymer coating materials is one of the factors 
applicable in pesticide release throughout a growing season[15]. A coated pesticide 
with polymer will immobilize the agrochemical product and make it resistant to runoff 
and leaching. A coated pesticide also protects the pesticide from environmental 
degradation such as microorganisms or chemical reactions. This will extend the 
amount of time it takes the plant to absorb the agrochemicals [16-18]. Chitosan, a 
natural biodegradable copolymer of N-acetylglucosamine, has been selected as a 
coating material owing to its cost-effectiveness, biocompatibility, non-toxic, 
degradation product, and non-carcinogenicity[19, 20]. This copolymer can easily be 
used to make a variety of products in the agro-industry [21-24]. While, cellulose 
acetate (CA) is a synthetic polymer used as a membrane material and an attractive 
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material due to its low cost of production, biodegradability, and non-toxic properties, 
which have numerous applications in agriculture and horticulture. The type of coating 
materials affects the release behaviour and dissolution rates of water-soluble 
pesticides from the host[25-27]. Therefore, this research aims to study the release 
behaviour of isoprocarb insecticide anion from the polymeric nanocomposites to 
sustain the release of insecticides into the media. The surface modification of ZLH-
DS-ISO nanocomposite using chitosan/cellulose acetate would be ideal for slow-
release formulation and is believed to be crucial for the continued good agricultural 
practice in plant cultivation. 

Experimental 

2.1 Synthesis of ZLH-DS-ISO nanocomposites coated with chitosan 
 
As previously described, a ZLH-DS-ISO nanocomposite was prepared in 

advance[28]. A ZLH-insecticide-coated chitosan nanocomposite was synthesized by 
the self-assembly method [29, 30]. This nanocomposite was prepared as follows: 0.1 
g of chitosan was dissolved in 50 mL of 1% acetic acid solution. The mixture of 
chitosan solution and 0.1 g of nanocomposite was stirred for 18 hours. The precipitated 
nanocomposite was washed by repeated cycles of centrifugation. The chitosan-coated 
nanocomposite was dried for 24 hours in an oven at 60 ℃ and kept in a sample bottle. 

 
2.2 Synthesis of ZLH-DS-ISO nanocomposite coated with cellulose acetate 
 
The cellulose acetate (CA) coating was done by the modification method as 

described in previous studies[31, 32]. The CA solution was prepared by dissolving 0.1 
g of CA in 25 mL of acetone. The 0.1 g of pesticide nanocomposite granules were 
placed in the CA solution and stirred for 18 hours. The coated granules were 
centrifuged and dried at 60 °C. The final product, designated as a CA-coated pesticide 
nanocomposite, was obtained. 

 
2.3 Characterization of layered material nanocomposites 
 
Several instruments have been used to characterize the synthesized ZLH 

nanocomposites. The PXRD patterns were obtained using Bruker AXS power 
diffraction (D8 Advance, λ = 1.5406 Å,  CuKα =  60 kV and 60 mA, 2θ° = 2° to 60° at 
2º min-1). The FTIR spectra were obtained using Thermo Nicolet 6700 FTIR (KBr 
pellet) at a range of 400–4000 cm−1. Thermal stability analysis was obtained using 
Perkin Elmer Pyris 1 TGA Thermo (heating rate = 20°C min-1). The surface morphology 
analysis was performed using FESEM (Hitachi model SU 8020 UHR). 

 
2.4 Controlled release study of insecticide 
 
Solutions of Na3PO4, Na2SO4, and NaCl were prepared at various concentrations 

(0.10 M, 0.20 M, and 0.30 M). The release medium was chosen because of its 
presence in rainwater and soil composition[33, 34]. The cuvette was filled with 0.6 mg 
nanocomposites[35], and the release of isoprocarb anion was measured at the preset 
time at max = 270.0 nm. 

Results and Discussion 

3.1 The PXRD pattern analysis 
 
Figure 1 (a) shows the PXRD pattern of ZLH-DS-ISO-CHIT (zinc layered 

hydroxide-dodecyl sulphate-isoprocarb-chitosan) nanocomposites. A nanocomposite 
of 0.0025 M isoprocarb with high crystallinity was chosen to be coated with chitosan. 
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The intercalation peak for both coated and uncoated ZLH-DS-ISO was centred at 3.31 
nm. The coated host (ZLH-DS-CHIT) has basal spacing at 3.30 nm and 0.98 nm, due 
to previously reported Zn5(OH)8(NO3)2.2H2O[36, 37]. A broad peak around 20° at a 2θ 
angle also appeared in both coated ZLH-DS and ZLH-DS-ISO nanocomposites, which 
corresponded to the superimposed peak of the coating material, chitosan[38]. 
Chitosan was coated onto the surface of both ZLH-DS and ZLH-DS-ISO 
nanocomposites via hydrogen bonding of –OH groups in ZLH and also –OH and –NH2 
groups in chitosan, which was similar to the interaction reported by previous 
studies[39-41]. 

The ZLH-DS-ISO-CA (zinc layered hydroxide-dodecyl sulphate-isoprocarb-
cellulose acetate) nanocomposite PXRD pattern is shown in Figure 1 (b). An uncoated 
nanocomposite of 0.0025 M isoprocarb was also selected to be coated with cellulose 
acetate (CA), similar to the chitosan-coated nanocomposite. The intercalation peak for 
both coated and uncoated ZLH-DS-ISO nanocomposite was 3.31 nm. The coated host 
ZLH-DS-CA had a basal spacing of 3.30 nm, and the second peak with a value of 0.98 
nm corresponds to Zn5(OH)8(NO3)2.2H2O. A wide peak around 20° was also found in 
the ZLH-DS-CA and ZLH-DS-ISO-CA nanocomposites, corresponding to the 
superimposed CA peak. The presence of a hydrogen bond between the hydroxyl 
group of CA and the ZLH layers is critical for the coating process[42, 43]. 

The result showed that there was no significant change in d-spacing values for all 
coated hosts, ZLH-DS, and ZLH-DS-ISO nanocomposites after coating with chitosan 
and CA.[44], proposed that the cellulose acetate molecule adsorbed on the surface of 
the ZLH particles during the coating process is not exchanged with the anion inside 
the layer. The intensity peak of both ZLH-DS-ISO-CHIT and ZLH-DS-ISO-CA 
nanocomposites was slightly decreased compared to the uncoated one, which was 
due to the disorder of stacked metal hydroxide layers[45]. A similar observation was 
also reported for polymer coatings on the surface of layered materials [45-50]. 
Additionally, there was a considerable broadening of the diffraction peaks upon 
coating the chitosan and CA matrix. This broadening was frequently associated with a 
reduction in the particle size of the crystallites or turbostratic of the layers, resulting in 
irregular or mismatched stacking of sequential layers[51].
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Figure 1 PXRD pattern of chitosan (a) and cellulose acetate (b) coated 

nanocomposites. 
3.2 FTIR spectroscopy 
Figure 2 shows the FTIR spectra of chitosan, uncoated and coated 

nanocomposites. As shown in Figure 2, chitosan-coated ZLH-DS showed a strong 
absorption peak at 3312 cm−1, which corresponded to the stretching vibrations of the 
hydroxyl group of free water molecule[52]. Two doublet absorption peaks at 2846 cm−1 
and 2913 cm−1 indicated the presence of stretching vibration for the aliphatic group of 
CH2. The absorption peak of the interlayer water molecule was overlaid with the 
bending vibration of the N-H group, which was centred at 1635 cm−1. Whereas, peaks 
at 1216 cm−1 and 1379 cm−1 indicated the existing sulphate group in SDS and the NO3

- 
group from zinc nitrate, respectively[52, 53]. An adsorption peak at 1379 cm-1 that 
was overlaid with an adsorption peak of nitrate supported the presence of chitosan in 
ZLH-DS spectra. 

The coated nanocomposite, ZLH-DS-ISO-CHIT, exhibits an adsorption band 
similar to both the ZLH-DS-CHIT and the chitosan spectra. All three adsorption peaks 
at 3312 cm−1, 2913 cm−1, and 2846 cm-1 exactly resemble the ZLH-DS-CHIT peak, 
which is attributed to the OH group and sp3 stretching of the C-H group. The bending 
vibration of N-H that disappeared after the intercalation of isoprocarb reappeared at 
1714 cm-1 referring to the presence of N-H group in chitosan molecule and the sp3 C-
H bending vibration peak centered at 1439 cm−1 and 1532 cm-1. Whereas the peak 
centred at 1258 cm-1 was due to C-N stretching vibration. The symmetric and 
asymmetric stretching vibrations of S=O from SDS molecule[54] correspond to the 
peaks at 1086 cm-1 and 1216 cm-1. 
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Four main absorptions were highlighted in the FTIR spectra of chitosan. The peak 

that appeared at 3427 cm-1 was due to the hydroxyl stretching vibration group, which 
also overlapped with the peak of N-H stretching vibration. In contrast, the N-H bending 
vibration group occurred at 1640 cm-1. The stretching vibration peak  of C-H[55] was 
observed at  2918 cm-1 whereas the stretching vibration of the C-N group was present 
at 1379 cm-1. Table 1 shows the main peaks for ZLH-SS-ISO nanocomposites. 

 

 

Figure 2 FTIR spectra of ZLH-DS-CHIT, ZLH-DS-ISO-CHIT nanocomposites and 
chitosan 

Figure 3 shows the FTIR spectra that supported the successful coating process of 
CA onto the surface of ZLH-DS and ZLH-DS-ISO nanocomposites. A weak absorption 
peak for CA coated ZLH-DS at 3580 cm−1 and 1635 cm−1 was attributed to O-H 
vibration and H-O-H in the interlayer H2O, respectively. On the other hand, the strong 
absorption peak at 3479 cm−1 was due to the hydroxyl group stretching vibrations of 
free water molecules. The peaks at 1736 cm−1, 1216 cm−1, and 1031 cm−1 were 
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superimposed from the CA spectra, due to the C-O, C-O (carboxylate), and C-O-C 
(pyranose ring) stretching vibrations. This absorption peak proved that ZLH-DS had 
been coated with CA. A few absorption peaks were overlaid on each other, such as 
the N-H and H-O-H peaks, the sulphate group with the C-O from a carboxylate group, 
and the stretching vibration of C-N with the aliphatic group stretching vibration (C-H, 
at 1368 cm-1). 

The FTIR spectra for the ZLH-DS-ISO-CA nanocomposite show absorption peaks 
that resemble both the CA molecule and the ZLH-DS-CA nanocomposite. The broad 
peak of the OH group at 3460 cm-1 in the CA coated nanocomposite was 
superimposed on CA's peak. Meanwhile, the sharp and intense peak at 1736 cm−1, 
1216 cm−1, 1031 cm−1, 1437 cm−1, and 1368 cm-1 corresponded to the vibration of C-
O, C-O (carboxylate), C-O-C (pyranose ring), and aliphatic group bending vibration, 
respectively. In the meantime, the peaks at 1368 cm-1 (C-N and C-H), 1216 cm-1 
(S=O), and 1635 cm-1 (N-H) in ZLH-DS-ISO-CA were similar to the vibration peak in 
ZLH-DS-CA spectra. 

The FTIR peak for CA was similar to the typical FTIR spectra in previously reported 
studies[56, 57]. The FTIR peak that corresponded to the OH group stretching 
vibrations for free water molecules was observed at 3460 cm-1. The sp3 stretching 
vibration of the C-H peak was detected at 2944 cm-1 and 2884 cm-1. The other peaks 
at 1736 cm−1, (1437 cm−1 and 1368 cm−1), 1216 cm−1, and 1031 cm-1 corresponded to 
C-O, C-H, C-O (carboxylate), and C-O-C (pyranose ring) respectively. The last two 
peaks below 1000 cm-1 existed in all three spectra. The vibration of the cyclic or acyclic 
aliphatic group was observed at 902 cm-1. Subsequently, the vibration of O-H (out of 
plane) was observed at 602 cm-1. All absorption peaks are listed in Table 2. 
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Figure 3 FTIR spectra for ZLH-DS-CA, ZLH-DS-ISO-CA nanocomposite and CA 
Table 1 

FTIR peaks for ZLH-DS-CHIT, ZLH-DS-ISO-CHIT nanocomposites and Chitosan 
 

Characteristic group 
ZLH-DS-CHIT 

(cm-1) 
ZLH-DS-ISO-CHIT 

(cm-1) 
Chitosan 

(cm-1) 

ν (O-H), H-bonded 3312 3312 3427 

ν (O-H) in the interlayer; H2O - - - 

ν (H-O-H) in the interlayer; H2O 1635 - - 

ν (C-N) 1379 1258 1379 
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2846 
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1532 
1439 
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ν (N-H), stretching - - 3427 

ν (N-H),bending 1635 1714 1640 

ν (N-O) 1379 - - 

νas  (S=O) 1216 1216 - 

νs (S=O) - 1086 - 

Table 2 
FTIR peaks for ZLH-DS-CA, ZLH-DS-ISO-CA nanocomposites and CA 

 

Characteristic group 
ZLH-DS-CA 

(cm-1) 
ZLH-DS-ISO-CA 

(cm-1) 
Cellulose acetate 

(cm-1) 

ν (O-H), H-bonded 3479 3460 3460 

ν (O-H) in the interlayer; H2O 3580 - - 

ν (H-O-H) in the interlayer; H2O 1635 1635 - 

ν (C-O) 1736 1736 1736 

ν (C-O), carboxylate 1216 1216 1216 

ν (C-O-C), pryanose ring 1031 1031 1031 

ν (C-N) 1368 1368 - 

ν (C-H),stretching 
2852 
2921 

2852 
2944 

2884 
2944 

ν (C-H),bending 1368 
1437 
1368 

1437 
1368 

ν (N-H), stretching - - - 

ν (N-H),bending 1635 1635 - 

νas  (S=O) 1216 1216 - 

νs (S=O) - 1031 - 

νas (ring) or ν (C-H),out of plane 902 902 902 

γ OH (out of plane) 602 602 602 

3.3 Thermal study 

Thermal studies of chitosan-coated nanocomposites (ZLH-DS-CHIT and ZLH-DS-
ISO-CHIT) were determined using TGA-DTG analyses (Figure 4). Figure 4 (a) depicts 
two stages that occurred at Tmax of 96 °C and 367 °C, with weight loss of 5.9% and 
64.0%, respectively. This stage was attributed to losses of moisture while the other 
stage of weight loss referred to the decomposition of deacetylated chitosan units and 
the dehydration of saccharide rings[58]. 

The thermal decomposition of coated ZLH-DS has four weight-loss stages, as 
shown in Figure 4 (b). At a Tmax of 79 °C, the 9.6% weight loss (first stage) corresponds 
to moisture loss. The partial decomposition of the SDS and dehydroxylation of the 
layers29 were referred to in the second stage at Tmax of 167 °C with 4.9 % weight loss. 
The SDS was decomposing at Tmax of 246 °C with a weight loss of 49.0% (third stage). 
The last weight loss stage was attributed to the decomposition of an amorphous 
mixture of salts that was generated during the initial SDS decomposition at Tmax of 887 
°C with 13.4% weight loss[59]. By comparing the total weight loss of coated ZLH-DS 
(76.9 %) with uncoated ZLH-DS (40.2%), it could be concluded that ZLH-DS had been 
coated by 36.7% of chitosan. 

Figure 4(c) depicts two stages of weight loss during the thermal decomposition of 
a ZLH-DS-ISO-CHIT nanocomposite. The first stage of weight loss at Tmax of 170 °C 
by 53.3 % was due to the decomposition of isoprocarb anion, while the second stage 
of weight loss (43.2%) at Tmax of 263 °C was due to the decomposition of SDS. Both 
thermal decompositions had a slight shift from the uncoated nanocomposite. However, 
the temperatures were still in the same ranges, which were 135 °C-200 °C and 200 
°C-270 °C for the decomposition of isoprocarb anion and SDS respectively. The 
thermal stability of coated ZLH-DS-ISO slightly decreased compared to uncoated 
nanocomposite. This resulted from the nanocomposite molecule precipitating outside 
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the chitosan matrix, as previously reported by Li et al.60. The total weight loss of coated 
ZLH-DS-ISO was 96.5% which was higher than the total weight loss of uncoated 
nanocomposite (93.0%). Based on the percentage difference between uncoated and 
coated nanocomposite, ZLH-DS-ISO nanocomposite was successfully coated with 
3.5% chitosan [28, 39, 53]. 

 

 

Figure 4 TGA/DTG curve for (a) chitosan, (b) ZLH-DS-CHIT, and (c) ZLH-DS-ISO-
CHIT nanocomposite 
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Figure 5 displays the thermal behaviour of ZLH-DS-CA and ZLH-DS-ISO-CA 

nanocomposites after coating by CA. At Tmax of 355 °C (weight loss of 84.6%), a single 
thermal event was clearly observed in cellulose acetate, which is due to the 
decomposition of the cellulose acetate matrix, which caused the formation of volatile 
gaseous then leaving a stable carbonaceous residue[60]. 

Figure 5(b) shows two steps of thermal decomposition for coated ZLH-DS. The 
first step of weight loss (6.4%) at Tmax of 99 °C corresponded to moisture loss. The 
next steps of weight loss at Tmax of 340 °C with a values of 66.4% corresponded to the 
dehydroxylation of the layers and the decomposition of SDS. By subtracting the total 
weight loss of ZLH-DS-CA (72.8%) from the uncoated ZLH-DS (40.2%), it could be 
suggested that 32.6 % of CA had coated the ZLH-DS. 

Meanwhile, Figure 5(c) depicts the thermal decomposition of the ZLH-DS-ISO-CA 
nanocomposite, distinguished by two weight loss stages. The first stage of 
decomposition occurred at Tmax of 153 °C and resulted in a 15.8% weight loss, followed 
by a second weight loss (78.4%) at Tmax of 353 °C. Similar to the thermal 
decomposition of ZLH-DS-ISO-CHIT, the first stage corresponded to the 
decomposition of isoprocarb while the second stage corresponded to the 
decomposition of SDS. 

Based on the above discussion, it can be suggested that the ZLH-DS-ISO-CA 
nanocomposite has low thermal stability compared to the ZLH-DS-ISO-CHIT 
nanocomposite. The CA itself degrades at a low temperature compared to pure 
chitosan, thus decreasing the degradation temperature of isoprocarb anion. The total 
weight loss for coated ZLH-DS-ISO is 94.2%, which is relatively higher than the total 
weight loss of uncoated nanocomposite (93.0%). It can therefore be assumed that the 
nanocomposite ZLH-DS-ISO was covered with 1.2% CA[12, 44]. 
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Figure 5 TGA/DTG curve for (a) CA, (b) ZLH-DS-CA, and (c) ZLH-DS-ISO-CA 

nanocomposites 

3.4 Surface morphology 
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reported by other studies[63]. When compared to pure chitosan, the surfaces of ZLH-
DS-ISO-CHIT nanocomposite had no interface layer and were more homogeneous. 
The formation of a homogeneous surface is probably caused by the interactions of the 
functional groups and hydrogen bonds that exist on coated nanocomposite[44]. 

The surface morphology of pure CA and ZLH-DS-ISO-CA nanocomposite bulk 
fractures is shown in Figure 7. The pure cellulose acetate surface revealed a smooth 
fracture which corresponded to a dense polymer film[64]. The surface morphology of 
the CA-coated ZLH-DS was similar to that of the chitosan-coated ZLH-DS. Its surface 
was rougher than the pure cellulose acetate, indicating successful encapsulation of 
ZLH-DS into cellulose acetate[46]. Meanwhile, the surface of the ZLH-DS-ISO-CA was 
rough, which could structurally increase the surface area of the ZLH-DS-ISO-CA, as 
previously described. Once ZLH-DS-ISO-CA was put into the water, it could absorb 
water and form a swollen hydrogel. This finding is consistent with the previously 
reported water-retention property for controlled release formulations of ZLH-DS-ISO-
CA nanocomposites[65, 66]. 

 

Figure 6 FESEM images (10K magnification) of (a) chitosan, (b) ZLH-DS-CHIT, 
and (c) ZLH-DS-ISO-CHIT nanocomposites 

 
Figure 7 FESEM images (10K magnification) of (a) CA, (b) ZLH-DS-CA, and (c) 

ZLH-DS-ISO-CA nanocomposites 
3.5 The release study of isoprocarb anion from chitosan and CA coated ZLH-

DS-ISO nanocomposite 

Figure 8 (a), (b), and (c) indicate the release profiles of ISO anion from the 
interlayer of the ZLH-DS-ISO-CHIT nanocomposites into 0.1 M, 0.2 M, and 0.3 M of 
Na3PO4, Na2SO4, and NaCl solutions, respectively. The figure shows that, the 

(a) (b) 

(c) 

(b) (c) (a) 
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accumulated release of isoprocarb anion increased with contact time for all 
concentrations of release solutions. The release rate in all solutions was fast-moving 
at the first 1000 min, followed by a slow-moving until 1500 min, before it reached 
equilibrium at 2000 min. 

The isoprocarb anion release profiles from the interlayer of ZLH-DS-ISO-CA 
nanocomposites into various concentrations of Na3PO4, Na2SO4, and NaCl solutions 
(0.1 M, 0.2 M, and 0.3 M) are shown in Figure 9 (a), (b), and (c), respectively. The 
release of ISO anion into Na3PO4 and Na2SO4 solutions displayed a similar pattern. 
ISO anion was released abruptly for the first 500 min, then slowly until it reached 
equilibrium at 1500 min. Meanwhile, the release of the ISO anion from the interlayer 
of ZLH-DS-ISO-CA into NaCl solution was rapid for the first 500 min, then moderate 
until it reached equilibrium at 2000 min. 

 

 
Figure 8 Release profile of ISO anion from ZLH-DS-ISO-CHIT nanocomposite into 

(a) 0.1 M, (b) 0.2 M and (c) 0.3 M concentration of aqueous Na3PO4, Na2SO4, and 
NaCl solutions 
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Figure 8 shows that the initial release of ISO anion from the interlayer of 

nanocomposites into all three solutions was rapid and then slowed until equilibrium 
was reached. The high density of incoming anion leads to the rapid release, whereas, 
the strong ISO interaction leads to the slower release[67]. [68] have reported that the 
release process depends on the existence of sacrificial anions in solutions. Sacrificial 
anions acted as a stimulus force to increase the release process of ISO anions into 
the solutions. Meanwhile, the low release rate of the anion in the matrix was due to 
the availability of free void spaces through which a lesser number of insecticide 
molecules could be transported. Furthermore, the ion exchange process occurred 
when a high-affinity sacrificial anion (phosphate, sulphate, and chloride anions) was 
applied to the ZLH compared to the ISO existing counter anion[69]. Additionally, the 
presence of chitosan and CA as coaters for ZLH-DS-ISO nanocomposite will create 
an initial burst of open release followed by a gradual release of isoprocarb. The initial 
burst open release involved isoprocarb diffusion as a result of rapid swelling and was 
partially related to adsorbed on the nanocomposite surface. 

As shown in Figure 8, the accumulated release of ISO anion from ZLH-DS-ISO-
CHIT into Na3PO4 solution was dominated by 36.0 %, 56.4 %, and 77.6 % of release 
percentage for 0.1 M, 0.2 M, and 0.3 M, respectively, compared to Na2SO4 and NaCl 
solutions. In Na2SO4 solution, the percentage of accumulated release was 25.0%, 
30.8%, and 52.6% in 0.1 M, 0.2 M, and 0.3 M, respectively, whereas in NaCl solution, 
the percentage was 2.4%, 15.0%, and 37.8% in 0.1 M, 0.2 M, and 0.3 M, respectively.

Figure 9 Release profile of ISO anion from ZLH-DS-ISO-CHIT nanocomposite into (a) 
0.1 M, (b) 0.2 M and (c) 0.3 M concentration of aqueous Na3PO4, Na2SO4, and NaCl 
solutions 
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The release profile of the ISO anion from ZLH-DS-ISO-CA was found to be higher 

in Na3PO4 solution with an accumulated percentage release of 38.8% (0.1 M), 47.8% 
(0.2 M), and 49.1% (0.3 M). The accumulated release of ISO anion into Na2SO4 
solution is lower than Na3PO4 solution but higher than NaCl solution, with values of 
22.5% (0.1 M), 29.2% (0.2 M), and 37.8% (0.3 M). In the NaCl solution, the percentage 
release was 20.5% (0.1 M), 28.7% (0.2 M), and 30.7% (0.3 M). As previously 
discussed, phosphate ion with three charges has the highest affinity, resulting in strong 
electrostatic attraction towards ZLH, followed by sulphate (two charges) and chloride 
ion (one charge)[69-71]. For this reason, the percentage release of ISO anion was 
higher in Na3PO4 solutions than in Na2SO4 and NaCl solutions. Table 3 shows the 
accumulated percentage release of ISO anion from ZLH-DS-ISO-CHIT and ZLH-DS-
ISO-CA nanocomposites. 

Table 3 
Percentage of ISO anion release from ZLH-DS-ISO-CHIT and ZLH-DS-ISO-CA 

nanocomposites into various solutions 

 

Concentration 
(M) 

Na3PO4 solution (%) Na2SO4 solution (%) NaCl solution (%) 

ZLH-DS-ISO-
CHIT 

ZLH-DS- ISO-
CA 

ZLH-DS- ISO-
CHIT 

ZLH-DS- ISO-
CA 

ZLH-DS- ISO-
CHIT 

ZLH-DS- ISO-
CA 

0.1 36.0 38.8 25.0 22.5 2.4 20.5 

0.2 56.4 47.8 30.8 29.2 15.0 28.7 

0.3 77.6 49.1 52.6 37.8 37.8 30.7 

 
The results demonstrate that the percentage release in coated nanocomposites 

was lower than in uncoated nanocomposites, which is consistent with Ghamami et 
al.’s47 findings. This phenomenon was due to an increased degree of protection of the 
chitosan and CA-coated nanocomposite. 

The accumulated percentage of ISO anion from ZLH-DS-ISO-CHIT shows a 
slower release compared to uncoated ZLH-DS-ISO and ZLH-DS-ISO-CA 
nanocomposites. Such an observation could be related to the orientation and 
arrangement of the anion within the intergallery matrix. From the PXRD analysis of 
ZLH-DS-ISO nanocomposite27, the anion was arranged in a well-ordered manner with 
high crystallinity compared to ZLH-DS-ISO-CHIT and ZLH-DS-ISO-CA 
nanocomposites. Therefore, the release of ISO anion from the interlayer ZLH-DS-ISO 
should be slower compared to coated nanomaterial [71, 72]. This study shows that the 
release of ISO anion from coated nanocomposite (low crystallinity) is slower than 
uncoated nanocomposite (high crystallinity). This observation was due to the increase 
of the hydrogen bond and electrostatic attraction among the host, chitosan/CA, and 
ISO anion, as in a similar study done by[73] . According to the findings, chitosan is an 
effective coating for ZLH-DS-ISO nanocomposites that can continuously release 
isoprocarbon anions 

3.6 Kinetic study of ISO anion from chitosan and CA coated ZLH-DS-ISO 
nanocomposites 

The release behaviour of ISO anion between the interlayers of coated ZLH-DS-
ISO nanocomposites was studied using five kinetic models, namely, Zeroth order (eq. 
1))[74], First order (eq. 2))[75], Pseudo-second order (eq. 3))[76], Parabolic Diffusion 
model (eq. 4))[77] and the Fickian Diffusion model (eq. 5))[78]. The following are the 
model equations. 

𝑥 = 𝑡 + 𝐶 
 

-log (1- Mi/Mf ) = 𝑡 + 𝐶 
 

t/ Mi = 1/ Mf
2 + t / Mf 

Mi / Mf = kt1/2 + C 
Mi/𝑀𝑓= 𝑘𝑡𝑛  
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𝑥 = percentage of isoprocarb anion release over time 𝑡,𝑀𝑖 = initial concentration, 

𝑀𝑓 = final concentration, 𝐶 = constant, 𝑛 = an empirical parameter and rate constant 

𝑘.  𝑡1/2 = time required for nanocomposite to release 50% of ISO anion 

The obtained fitting curve for ZLH-DS-ISO-CHIT nanocomposite (0 to 500 min) is 
presented in Figures 10 to 12. The first order was followed by the ISO anion release 
into the Na3PO4 solution. Whereas the ISO anion release into Na2SO4 and NaCl 
solutions followed the parabolic diffusion model. The fitting data obtained (k, t1/2, and 
r2) are listed in Table 4. Meanwhile, the cumulative releases of the ISO anion from 
ZLH-DS-ISO-CA nanocomposite were fitted to the kinetic models shown in Figures 13 
to 15. The data was plotted between 0 and 500 min, which shows that the release of 
ISO anion into all three solutions followed the pseudo-second-order. The calculated 
values of k, t1/2, and r2 are listed in Table 5. 

As shown in Table 4 (release profile for ZLH-DS-ISO-CHIT nanocomposite), the 
rate constant (k) and t1/2 increased with increasing concentration of sodium phosphate 
solution which indicated that, the release of ISO anion depended on the concentration 
of incoming anion. This is consistent with the first-order kinetic model that 
demonstrated the release process, in which the dissolution rate was determined solely 
by the concentration of one reactant[23]. The parabolic diffusion kinetic model, on the 
other hand, emphasises the diffusion-controlled system, which is controlled by surface 
diffusion or intraparticle diffusion[79]. [32, 44] reported that the surface diffusion or 
intra particle diffusion via ion exchange process was the rate-determining step in the 
release mechanism. Table 4 shows the release rate and t1/2 for ISO anion releases 
into Na2SO4 and NaCl solutions, which showed a nearly identical pattern. The release 
rate and t1/2 for both solutions increased with the increasing sulphate and chloride 
concentrations, due to the strong electrostatic interaction between ZLH and ISO anion 
that affected the diffusion rate in Na2SO4 and NaCl solutions. 

The release rate of the ZLH-DS-ISO-CA nanocomposite increased with the 
increasing concentration of release solution while the t1/2 decreased. This was due to 
the fact that at higher concentrations of the release solution, more ISO anion could be 
released, resulting in a rapid ion exchange process between the ISO anion and the 
incoming anion. The t1/2 values for ISO anion release between the interlayers of ZLH-
DS-ISO-CA nanocomposite into NaCl solutions were higher compared to Na3PO4 and 
Na2SO4 solutions, which indicated that the release of ISO anion in NaCl solution was 
slower compared to the other two solutions[80]. This was attributable to chloride ions' 
lower affinity, which resulted in a slower rate of ISO release from its 
nanocomposite[81]. 
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Figure 10 Kinetic fitting data for ZLH-DS-ISO-CHIT nanocomposite in various 
concentration of Na3PO4 solutions: (a) zeroth, (b) first, (c) pseudo-second-order, (d) 
parabolic diffusion, and (e) Fickian diffusion 
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Figure 11 Kinetic fitting data for ZLH-DS-ISO-CHIT nanocomposite in various 
concentration of Na2SO4 solutions: (a) zeroth, (b) first, (c) pseudo-second-order, (d) 
parabolic diffusion, and (e) Fickian diffusion 
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Figure 12 Kinetic fitting data for ZLH-DS-ISO-CHIT nanocomposite in various 
concentration of NaCl solutions: (a) zeroth, (b) first, (c) pseudo-second-order, (d) 
parabolic diffusion, and (e) Fickian diffusion 
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Figure 13 Kinetic fitting data for ZLH-DS-ISO-CA nanocomposite in various 
concentration of Na3PO4 solutions: (a) zeroth, (b) first, (c) pseudo-second-order, (d) 
parabolic diffusion, and (e) Fickian diffusion 
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Figure 14 Kinetic fitting for ZLH-DS-ISO-CA nanocomposite in various 
concentration of Na2SO4 solutions: (a) zeroth, (b) first, (c) pseudo-second-order, (d) 
parabolic diffusion, and (e) Fickian diffusion 
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Figure 15 Kinetic fitting data for ZLH-DS-ISO-CA nanocomposite in various 
concentration of NaCl solutions: (a) zeroth, (b) first, (c) pseudo-second-order, (d) 
parabolic diffusion, and (e) Fickian diffusion 
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Table 4 

Correlation coefficients (r2), rate constant (k) and half-life (t1/2) of isoprocarb release from 
ZLH-DS-ISO-CHIT nanocomposite into solutions (Na3PO4, Na2SO4, NaCl) 

 

Na3PO4 
(M) 

Zeroth 
order 

Pseudo- 
second- 

order 

Parabolic 
diffusion 

Fickian First-order 

 𝑟2 𝑟2 
𝑘 (×10-4) 

(mol-1L s-1) 

𝑡1/2 

(min) 

c 
(×10-2) 

0.1 0.894 0.992 0.984 0.957 0.922 1.48 202.6 4.45 

0.2 0.984 0.003 0.959 0.994 0.983 3.64 512.6 1.61 

0.3 0.994 0.512 0.965 0.984 0.994 4.07 533.8 1.35 

Na2SO4 
(M) 

Zeroth 
order 

First-
order 

Pseudo- 
second- 

order 
Fickian Parabolic diffusion 

 𝑟2 𝑟2 
𝑘 (×10-3) 

(mol-1L s-1) 

𝑡1/2 

(min) 

c 
(×10-3) 

0.1 0.886 0.898 0.986 0.959 0.960 5.90 14.5 2.30 

0.2 0.945 0.957 0.981 0.983 0.991 7.93 16.5 23.30 

0.3 0.997 0.995 0.781 0.976 0.975 12.80 20.4 67.50 

NaCl 
(M) 

Zeroth 
order 

First-
order 

Pseudo- 
second- 

order 
Fickian Parabolic diffusion 

 𝑟2 𝑟2 
𝑘 (×10-3) 

(mol-1L s-1) 

𝑡1/2 

(min) 

c 
(×10-3) 

0.1 0.945 0.946 0.943 0.975 0.996 0.66 14.8 0.13 

0.2 0.969 0.975 0.900 0.997 0.99 5.25 18.1 17.50 

0.3 0.846 0.874 0.900 0.953 0.977 13.90 16.4 52.40 

Table 5 
Correlation coefficients (r2), rate constant (k) and half-life (t1/2) of isoprocarb 

release from ZLH-DS-ISO-CA nanocomposite into solutions (Na3PO4, Na2SO4, NaCl) 
 

Na3PO4 
(M) 

Zeroth 
order 

First- 
order 

Parabolic 
diffusion 

Fickian Pseudo-second-order 

 𝒓𝟐 𝒓𝟐 
𝒌 (×10-3) 

(mol-1L s-1) 

𝒕𝟏/𝟐 

(min) 

c 
 

0.1 0.975 0.996 0.935 0.841 0.996 2.61 220.9 1.88 

0.2 0.924 0.998 0.94 0.837 0.991 2.75 219.4 2.33 

0.3 0.872 0.971 0.971 0.919 0.995 4.37 207.6 1.97 

Na2SO4 
(M) 

Zeroth 
order 

First- 
order 

Parabolic 
diffusion 

Fickian Pseudo-second-order 

 𝑟2 𝑟2 
𝑘 (×10-3) 

(mol-1L s-1) 

𝑡1/2 

(min) 

c 
 

0.1 0.858 0.958 0.989 0.916 0.997 3.93 223.2 3.90 

0.2 0.727 0.919 0.985 0.900 0.996 4.62 222.6 3.94 

0.3 0.773 0.926 0.981 0.882 0.996 5.76 220.2 3.60 

NaCl 
(M) 

Zeroth 
order 

First-
order 

Parabolic 
diffusion 

Fickian Pseudo-second-order 

 𝑟2 𝑟2 
𝑘 (×10-3) 

(mol-1L s-1) 

𝑡1/2 

(min) 

c 
 

0.1 0.936 0.962 0.975 0.851 0.999 3.77 234.9 1.68 

0.2 0.831 0.902 0.987 0.883 0.997 7.61 230.3 2.22 

0.3 0.813 0.857 0.983 0.939 0.994 17.61 220.2 2.70 
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1. Conclusion 
 
In conclusion, the PXRD pattern showed high crystallinity of ZLH-DS-ISO-CA 

(19.8%) compared to ZLH-DS-ISO-CHIT (16.9%) nanocomposite. Meanwhile, the 
thermal analysis showed that the maximum temperature of ISO anion in ZLH-DS-ISO-
CHIT nanocomposite was higher than the ZLH-DS-ISO-CA nanocomposite, which 
resulted in a higher coated percentage. Therefore, it could be concluded that chitosan 
gives protection to ISO anion than CA. The morphology analysis for both 
nanocomposites showed almost similar surface characteristics. It supported the 
successful coating of chitosan and CA on the surface of ZLH-DS-ISO-CHIT and ZLH-
DS-ISO-CA nanocomposites. When compared to the ZLH-DS-ISO-CHIT and ZLH-DS-
ISO-CA nanocomposites, the percentage of ISO anion release from the interlayer of 
ZLH-DS-ISO was substantially higher in all solutions. The ISO anion release from ZLH-
DS-ISO-CHIT nanocomposite was found to be at a much slower rate than that of ZLH-
DS-ISO-CA nanocomposite in all solutions. Therefore, it can be proposed that 
chitosan is the best coater for ZLH-DS-ISO nanocomposite compared to CA. The 
kinetic study of ISO anion release from ZLH-DS-ISO-CHIT nanocomposite into 
Na3PO4 solution was fitted with the first order, while the parabolic diffusion model best 
describes the release of the ISO anion in Na2SO4 and NaCl solutions. In the meantime, 
the kinetic study of the ISO anion released from ZLH-DS-ISO-CA nanocomposite into 
all three solutions demonstrates the release profile followed by the pseudo-second-
order. To summarise, surface modification of ZLH-DS-ISO nanocomposite using 
chitosan and cellulose acetate as a coater is critical as a protective layer to sustain 
anionic pesticide release from their nanocomposite. This output can be fine-tuned for 
controlled release applications in plant cultivation. 
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