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Abstract
In this work, the novel utilisation of customised double- and triple-tail sodium bis(3,5,5-trimethyl-1-hexyl) sulphosuccinate 
(AOT4) and sodium 1,4-bis(neopentyloxy)-3-(neopentyloxycarbonyl)-1,4-dioxobutane-2-silphonate (TC14) surfactants to 
assist the direct graphene oxide (GO) synthesis via electrochemical exfoliation utilising dimethylacetamide (DMAc) as a 
solvent were investigated. The synthesised DMAc-based GO and titanium dioxide (TiO2) nanoparticles were then used to 
fabricate polyvinylidene fluoride (PVDF)-based nanofiltration (NF) membranes by the non-solvent-induced phase separa-
tion method. The incorporation of GO and TiO2 as hydrophilic nanoparticles were to enhance membrane hydrophilicity. 
The utilisation of higher surfactants’ tail number obviously alters the fabricated membrane’s morphology which further 
affects its performance for dye rejection and antifouling ability. Higher surfactants’ tail number resulted in higher oxidation 
process which then provided more interaction between the GO and PVDF. Based on the dead-end cell measurement, PVDF/
TC14-GO/TiO2 presented a slightly higher dye rejection efficiency of 92.61% as compared to PVDF/AOT4-GO/TiO2 mem-
brane (92.39%). However, PVDF/TC14-GO/TiO2 possessed three times higher water permeability (48.968 L/m2 h MPa) 
than PVDF/AOT4-GO/TiO2 (16.533 L/m2 h MPa) and also higher hydrophilicity as presented by lower contact angle 
(65.4 ± 0.17°). This confirmed that higher surfactants’ tail number improved the fabricated membrane’s performance. Both 
fabricated membranes also exhibited high flux recovery ratio (FRR) ( > 100%) which indicated better antifouling properties.
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Article Highlights

•	 High dye rejection by using simpler electrochemical exfoliation utilising surfactant for GO synthesis.
•	 Improved water permeability by utilising triple-tail-based GO.
•	 Enhanced hydrophilicity by utilising triple-tail-based GO.
•	 Higher membrane porosity by utilising triple-tail-based GO.
•	 High antifouling performance by different surfactants’ tail number.

Keywords  Dye rejection · Electrochemical exfoliation · Graphene oxide · Hyper-branched surfactant · Nanofiltration · 
Titanium dioxide

Introduction

The rapid growth of various industries such as paints, textile, 
printing inks, paper, and plastics causes both high polluted 
water and high demand for clean water, simultaneously. 
These industries, especially textile and dyeing industries 
utilised a large amount of synthetic dyes to colour their prod-
uct which resulted in large amount of polluted wastewater 
and released to the environment. Dyes presence can affect 
water quality since they are toxic and non-biodegradable 
(Liu et al. 2019; Tran et al. 2019; Yao et al. 2015). Therefore, 
the removal of this kind of pollutant is crucially needed. 
Numerous approaches have been attempted to find an effec-
tive method to treat polluted water to protect human health 
and the environment (Santhosh et al. 2016). Among vari-
ous dye removal methods, membrane separation is one of 
the versatile and effective technologies to remove polluted 
water, such as dye contamination (García et al. 2020; Liu 
et al. 2017). This was due to its several advantages, such as 
no phase changes, simple in operation, and relatively low 
energy consumption (Kang and Cao 2014). Over the past 
few decades, it becomes popular and plays an important role 
in major industries for water purification, metal recovery and 
protein separation (Escobar and Van Der Bruggen 2015).

Membrane separation technology has become promising 
in many type of filtration such as microfiltration, ultrafiltra-
tion (UF), nanofiltration (NF), and reverse osmosis (RO). 
All of these types of filtration are classified based on their 
membrane properties and separation principle. Recently, the 
NF membrane has widely applied for water treatment due 
to its small pore size (1–5 nm) compared to UF, low operat-
ing pressure (4–20 MPa) and high water permeability than 
RO and its capability to retain high valence ions and low 
molecular weight (Park et al. 2012; Shon et al. 2013). The 
polymeric membrane can be fabricated by different tech-
nique such as sintering, stretching, track-etching and phase 
inversion (Liao et al. 2018). Among them, the phase inver-
sion method is commonly used due to its several advantages, 
such as applicable for various polymers, simple in prepara-
tion and easy optimisation of membrane thickness and pore 
size (Ladewig & Al-Shaeli, 2017; Sangermano et al. 2015).

Synthetic polymer membrane namely polyvinylidene 
fluoride (PVDF), a semicrystalline polymer with repeating 
units of –CH2–CF2–, has been extensively used in water treat-
ment processes due to its outstanding physical and chemical 
properties (Aid et al. 2019; Anvari et al. 2017; Contreras 
et al. 2018; Kang and Cao 2014; Sangermano et al. 2015). 
However, the hydrophobic nature of the PVDF membrane 
causes some critical problems which limit its application due 
to the membrane fouling during the separation process (Li 
et al. 2015; Wu et al. 2018). The membrane fouling causes 
the decline in water flux permeability, shortening membrane 
lifetime and altering membrane selectivity thus decreased the 
membrane performance (Teng et al. 2020; Wu et al. 2020; 
Zhang et al. 2016). Therefore, several approaches have been 
developed to increase the hydrophilicity properties of PVDF 
membrane such as physical and chemical modification with 
hydrophilic organic and inorganic materials (Kang and Cao 
2014; Xia and Ni 2014). Among these approaches, a physical 
modification of blending with organic or inorganic materials 
has been widely used due to its advantage of facile prepa-
ration method through phase inversion. Recently, organic 
materials-blended PVDF (PMMA, PVAC, PA6) (Freire 
et al. 2012; Vo and Giannelis 2007), metal oxide particles 
[aluminium oxide (Al2O3), titanium dioxide (TiO2) and zinc 
oxide (ZnO)] (Li et al. 2015; Liu et al. 2018), carbon nano-
tubes (CNTs) (Sivakumaran et al. 2016; Zheng et al. 2009) 
and graphene oxide (GO) (Wu et al. 2018) have been utilised 
to enhance the PVDF membrane properties by increasing 
antifouling effect, permeability and membrane selectivity.

In particular, a potential candidate to effectively reinforce 
PVDF polymeric materials is TiO2 due to its excellent prop-
erties such as hydrophilicity, chemical stability, low toxic-
ity and commercial availability. TiO2 is considered the best 
metal oxide to overcome the fouling issues by increasing the 
membrane hydrophilicity (Liu et al. 2018; Wu et al. 2018). 
In addition, it also possesses a small particle size and a large 
surface area (Park et al. 2018). Several reports have demon-
strated that the utilisation of TiO2 could improve the fouling 
resistance by increasing the membrane hydrophilicity. Wang 
et al. (2017) showed that introduction of TiO2 into the GO-
based membrane presents low relative flux reduction (24%) 
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as compared to pristine GO-based membrane (74%). This 
low value in relative flux reduction indicates a great anti-
fouling property (Wang et al. 2015). The result obtained by 
Zhang et al. (2017) showed an improvement in antifouling 
properties when the Ti and O element on the membrane 
increased as compared to the pristine membrane. This indi-
cated that the hydrophilicity of the membrane was enhanced 
with the TiO2 present (Zhang et al. 2017). Méricq et al. 
(2015) also showed the improvement of membrane structure, 
hydrophilicity properties and permeability when TiO2 nano-
particles were used as an additive for membrane fabrication.

On the other side, GO was also utilised as an additive 
to fabricate a hydrophilic membrane. GO offers many 
advantages for water treatment due to its large surface area 
(calculated up to 2630 m2g−1) (Huang et al. 2012), good 
chemical stability and high mechanical strength (Young 
modulus ~ 1 TPa) (Lee et al. 2008). As exfoliated GO con-
tains a considerable number of oxygen-functional groups, 
such as carboxyl, carbonyl, epoxy, and hydroxyl groups, GO 
is highly hydrophilic (Miao et al. 2017; Zhang et al. 2013). 
GO can be synthesised by using a chemical approach, such 
as Hummers’ method and electrochemical exfoliation. The 
common Hummers’ method resulted a high quality of the 
synthesised GO. However, this method involved high haz-
ardous chemical consumption, long-time production and 
complicated procedures (Zaaba et al. 2017). A low cost and 
simpler GO synthesis approach, which is an electrochemical 
exfoliation method assisted by surfactant then offers several 
advantages such as greener, simpler and low-cost produc-
tion to synthesise GO (Nurhafizah et al. 2015; Parvez et al. 
2013; Suriani et al. 2019). Many reports of GO-incorpo-
rated membranes for wastewater treatment systems have also 
successfully increased rejection for different heavy metals 
(Kochameshki et al. 2017) and dye pollutants (Safarpour 
et al. 2016; Yang et al. 2017; Zhu et al. 2017). Nonethe-
less, the agglomeration of GO is the major drawback in the 
development of GO/PVDF membrane, which can reduce 
its performance. To prevent GO from agglomeration, the 
utilisation of surfactant for better dispersion of GO in the 
polymer matrix is essentially needed.

The previous report showed that the highest CNTs 
dispersion was achieved by using the triple-tail sodium 
1,4-bis(neopentyloxy)-3-(neopentyloxycarbonyl)-1,4-di-
oxobutane-2-silphonate (TC14) surfactant as compared to 
single- or double-tail surfactant (Mohamed et al. 2014). 
Suriani et al. (2016) showed that the utilisation of triple-tail 
TC14 surfactant has presented a smooth surface with low 
agglomeration of GO when the synthesised GO was inter-
mixed with natural rubber latex. The triple-tail surfactant 
offers triple interaction during electrochemical exfoliation 
which resulted in higher dispersion of GO. This result was 
also in good agreement when the synthesised GO utilising 
triple-tail TC14 surfactant was used to fabricate thin film 

and resulted in higher DSSCs efficiency as compared to the 
single-tail surfactant (Suriani et al. 2018a, b, c). These con-
firm that the surfactant’s tail number essentially affects the 
quality of the synthesised GO.

The previous report has also proved that the direct GO 
synthesis utilising single-tail sodium dodecyl sulphate (SDS) 
surfactant and DMAc as solvent was successfully achieved 
and can be used to fabricate NF membrane which resulted in 
high dye rejection of 92.76% (Suriani et al. 2019). Therefore, 
it is believed that by using customised double-tail sodium 
bis(3,5,5-trimethyl-1-hexyl) sulphosuccinate (AOT4) and 
triple-tail TC14 surfactants, better dispersion and homoge-
neity of GO-based membrane sheet will be achieved and 
resulted to better performance for water treatment appli-
cations. To the best of our knowledge, the novelty of this 
study is the utilisation of customised double-tail AOT4 and 
triple-tail TC14 surfactant for the GO synthesis by electro-
chemical exfoliation method for dye rejection application. 
It is believed that the utilisation of both surfactants in the 
fabrication of the PVDF/GO-based hybrid membrane will 
increase the hydrophilicity, water flux, dye rejection and 
anti-fouling performance.

Materials and Methods

Materials

The customised double-tail AOT4 and triple-tail TC14 
surfactants (see Table 1), graphite rods (99.99 % , 150 mm 
in length and 10  mm in diameter, GoodFellow GmbH, 
Germany) and DMAc were used for GO synthesis. PVDF 
(Kynar 760, grade in palette form) as a polymer material and 
titanium (IV) oxide ( ≥ 99.5% , Sigma-Aldrich) as an additive 
were used to fabricate the NF membrane. Meanwhile, the 
MB dye (Sigma-Aldrich) was used for the dye rejection test.

DMAc‑Based GO Synthesis

GO was synthesised via electrochemical exfoliation as men-
tioned in the previous works (Suriani et al. 2018a, b, c) by 
utilising DMAc as an electrolyte. In brief, AOT4 and TC14 
were dissolved in DMAc to form the 0.1 M of the elec-
trolyte, respectively. Then, two graphite rods were partially 
immersed in the prepared electrolyte and connected to the 
DC power supply (7 V) for 24 h of GO synthesis time.

Preparation of NF Membranes

The NF membrane was prepared by the non-solvent induced 
phase separation (NIPS) method. 20 wt% of PVDF and 1 
wt% of TiO2 were dissolved to the 79 wt% of the synthesised 
DMAc_AOT4 and DMAc_TC14 solution, respectively and 
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mechanically stirred at 70 °C for 48 h until a homogeneous 
solution was obtained. Then, the well-mixed casting solution 
was kept at room temperature overnight to remove the air 
bubbles. Next, the fully degassing membrane solution was 
cast using a casting knife on a clean glass plate with 200 mμ 
casting gap. Afterward, the casted membrane was directly 
immersed in deionised (DI) water overnight. The fabricated 
NF membrane was kept by soaking it in DI water until fur-
ther characterisation.

Membrane Characterisation

The membrane surface and cross-section morphology were 
characterised by field emission scanning electron micros-
copy (Hitachi SU8020). Liquid nitrogen immersion was car-
ried out prior to FESEM observation to crack the membrane 
samples and further coated with a thin sputtered gold layer. 
The elemental compositions of the samples were directly 
confirmed by an EDX instrument (Horiba EMAX). The 
structural properties of the fabricated NF membranes were 
studied using micro-Raman spectroscopy (Renishaw InVia 
microRaman System). Moreover, the hydrophilicity of the 
fabricated membranes was investigated using contact angle 
measurement by placing the dry membrane on a glass slide 
and conducting drop shape analysis (DSA100, KrussGmbH, 
Germany). The membrane porosity was determined through 
the gravimetric method by using the following equation:

(1)� =

(

w1 − w2

)

∕�w

[
(

w1 − w2

)

∕�w)] + (w2∕�p)
× 100%.

where ε is membrane porosity (%), w1 and w2 were the wet 
and dry membrane weights (g), respectively, ρw is the water 
density (0.998 g/cm3), and ρp is the PVDF density (1.78 g/
cm3).

Water flux, dye rejection and antifouling measurement 
were evaluated using a dead-end stirred membrane evalu-
ation cell system (Sterlitech HP4750) with a capacity of 
300 mL and an effective area of 14.6 cm2. All membrane 
samples were pressurised with DI water at 0.6 MPa for 
30 min before measurement for the compression test. Then, 
water flux measurement was performed for 10 min measure-
ment with 5 different pressure levels (0.1–0.5 MPa), respec-
tively. The water flux was then estimated using the following 
equation:

where J is the permeated flux (L/m2h), V is the permeated 
water volume (m3), A is the membrane area (m2), and Δt is 
the operating time (h).

Next, the dye rejection test was performed by utilising 
10 ppm concentration of MB solution. The absorbance of 
the treated dye solution was then measured using UV–Vis 
spectroscopy. The dye rejection efficiency was calculated 
using the following equation:

where R is the dye rejection efficiency (%), Cp is the perme-
ate dye concentration (ppm), and Co is the initial dye concen-
tration (ppm). Subsequently, the antifouling measurement 

(2)J =
V

AΔt
.

(3)R(%) =

[

1 −
Cp

Co

]

× 100%.

Table 1   Surfactant’s molecular structure used in this study

Surfactant Surfactant molecular structure Chemical name

AOT4 Sodium bis(3,5,5-trimethyl-1-hexyl) sulphosuccinate

TC14 Sodium 1,4-bis(neopentyloxy)-
3-(neopentyloxycarbonyl)-1,4-dioxobutane-2-sul-
phonate
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was done by pressuring the post-treated membrane with DI 
water for 30 min before performing the water flux measure-
ment at 0.2 MPa for 10 min. The flux recovery ratio (FRR) 
was calculated by the following formula:

where FRR is the flux recovery ratio, Jw1 and Jw2 are water 
flux before and after measurement, respectively. Operations 
of some characterisation items can refer to the literatures (Li 
et al. 2020; Liu et al. 2020; Rao et al. 2020; Xu et al. 2021).

Results and Discussion

Morphological Properties of NF Membranes

FESEM analysis was carried out to investigate the surface 
and cross-section morphology of the fabricated NF mem-
branes and the results are presented in Fig. 1. Based on 
Fig. 1a, AOT4-GO clearly spreads all over PVDF/AOT4-
GO/TiO2 sample (red arrows) and possess a smooth surface 
without any crack. This indicated good dispersion of GO in 
membrane matrix, good stability and durable surface of the 
fabricated NF membranes (Safarpour et al. 2016; Zinadini 
et al. 2014). By utilising higher magnification, it was also 
observed that PVDF/AOT4-GO/TiO2 membrane’s surface 
possessed pores with a diameter range from 27.8–59.5 nm 
(Fig. 1b). Based on its cross-section view, there are two lay-
ers which exhibited a typical asymmetric membrane struc-
ture formed for PVDF/AOT4-GO/TiO2. As presented in 
Fig. 1c, PVDF/AOT4-GO/TiO2 has a thin and dense skin 
layer which was supported by a macro-voids structure. The 
bottom sub-layer of this membrane is a sponge-like struc-
ture. Further EDX analysis also confirmed the presence of 
C, O, F, Na, S and Ti as the component of the fabricated NF 
membranes as depicted in Fig. 1d. PVDF/AOT4-GO/TiO2 
contains C and O atomic percentages of 36.95 and 0.97%, 
respectively. The existence of AOT4 in PVDF/AOT4-GO/
TiO2 sample also can be proven by the atomic percentage 
of Na and S (2.75 and 1.71%, respectively) in the fabri-
cated membrane. Meanwhile, a low Au atomic percentage 
of around 1.15% was caused by the thin gold coating for 
FESEM analysis.

Next, Fig. 1e showed that the fabricated PVDF/TC14-
GO/TiO2 NF membrane also has a smooth surface without 
any agglomeration or crack. TC14-GO was also observed 
to be well-dispersed in the membrane matrix as shown by 
red arrows. According to Fig. 1f, the larger pore size of 
PVDF/TC14-GO/TiO2 (27.8–91.3 nm) was clearly seen as 
compared to PVDF/AOT4-GO/TiO2. This might be attrib-
uted to the effect of higher GO content in PVDF/TC14-GO/

(4)FRR =

[

Jw2

Jw1

]

× 100%.

TiO2 resulted from electrochemical exfoliation utilising 
higher surfactant’s tail number. The PVDF/TC14-GO/TiO2 
NF membrane displayed a thin and dense skin layer with a 
well-developed of wider and longer macro-voids structure 
surrounded by sponge-like layer compared to PVDF/AOT4-
GO/TiO2 (Fig. 1g). In contrast with PVDF/AOT4-GO/TiO2, 
the bottom sub-layer (sponge-like) of PVDF/TC14-GO/TiO2 
was almost unobservable (see insert picture) which might 
be caused by higher GO content in the sample (Zhu et al. 
2017). In the previous study, it had been confirmed that the 
surfactant’s tail-number influenced the quality of the syn-
thesised GO (Suriani et al. 2018a). Higher surfactant’s tail 
number in electrochemical exfoliation process was believed 
to also resulted in a higher amount of GO which noticeably 
influence the pores structure. The abundance hydrophilic 
group in GO (oxygen-functional groups) increased the mem-
brane’s hydrophilicity thus accelerated the water diffusion 
during the exchange of non-solvent and solvent and led to 
the formation of larger macro-voids structure (Méricq et al. 
2015; Yang et al. 2017). EDX analysis further confirmed that 
PVDF/TC14-GO/TiO2 presented a higher C and O atomic 
percentage (39.02 and 4.03%, respectively) as compared 
to PVDF/AOT4-GO/TiO2 (Fig. 1h). The presence of Na 
(3.55%) and S (0.15%) further proved the existence of TC14 
surfactant in the PVDF/TC14-GO/TiO2 sample. A low Au 
atomic percentage of around 1.04% indicated the thin gold 
coating for FESEM analysis.

Functional Groups of NF Membranes

Raman spectroscopy is a useful technique to confirm the 
existence of GO in the fabricated membrane. Overall, micro-
Raman spectra of both fabricated membranes showed a simi-
lar pattern as shown in Fig. 2. There are several peaks corre-
spond to TiO2 and GO in the range of 147.12–1579.80 cm−1 
which confirmed their existence as additives. However, 
PVDF peaks were unobservable for both membranes due to 
their low intensity as stated in the previous study (Suriani 
et al. 2019). TiO2 peaks were observed at 147.12, 392.73, 
510.35 and 635.19 cm−1 and also 149.13, 396.69, 512.41, 
and 638.23 cm−1 for PVDF/AOT4-GO/TiO2 and PVDF/
TC14-GO/TiO2, respectively. These peaks were correspond-
ing to the Eg, B1g, A1g and Eg modes of the anatase phase of 
TiO2.

Moreover, micro-Raman spectra of D- and G-band as 
the characteristic of the carbon material were observed 
for both fabricated NF membranes. PVDF/AOT4-GO/
TiO2 and PVDF/TC14-GO/TiO2 possessed the D- and 
G-band at 1330.55 and 1579.80 cm−1 and also 1331.16 
and 1579.37 cm−1, respectively. The D-peak corresponded 
to the carbon lattice distortion, while G-peak confirmed 
the sp2 hybridisation of the carbon atom (Ai et al. 2018). 
The shifted D- and G-band peak of PVDF/TC14-GO/TiO2 
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compared to PVDF/AOT4-GO/TiO2 was might be due to 
a higher oxidation process during electrochemical exfolia-
tion resulted from higher surfactants’ tail number. This 
was also confirmed by higher D-band peak intensity (ID) 

of PVDF/TC14-GO/TiO2 compared to PVDF/AOT4-GO/
TiO2 which indicated a higher defect level (Khan et al. 
2010). In addition, lower G-band peak intensity (IG) of 

Fig. 1   FESEM images and 
EDX analysis of the fabricated 
NF membranes; (a–d) PVDF/
AOT4-GO/TiO2 and (e–h) 
PVDF/TC14-GO/TiO2
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PVDF/TC14-GO/TiO2 indicated a decreased number of 
exfoliated GO layer (Díez-Pascual et al. 2018).

ID/IG ratio can be used to investigate the defect level of 
the sample. Based on the calculation, PVDF/TC14-GO/
TiO2 presented a higher defect level of the synthesised GO 
which indicated by a higher ID/IG ratio (1.13) compared 
to PVDF/AOT4-GO/TiO2 (1.06) (Francolini et al. 2019; 
Kaniyoor and Ramaprabhu 2012; Khan et al. 2010). In 
addition, it also showed higher oxygen-functional groups 
of PVDF/TC14-GO/TiO2 resulted from electrochemical 
exfoliation than PVDF/AOT4-GO/TiO2 (Francolini et al. 
2019; Luo et al. 2018; Yu et al. 2015). This result fur-
ther confirmed that the utilisation of triple-tail TC14 sur-
factant leads to higher interaction during GO synthesis 
thus resulted in better GO dispersion.

Hydrophilicity, Contact Angle and Porosity 
Properties of NF Membrane

Contact angle measurement was then used to investigate 
the membrane’s surface hydrophilicity. From literature, 
pure PVDF have the highest contact angle (77.1°–104.3°) 
as compared to the hybrid membrane (Nikooe and Saljoughi 
2017; Nor et al. 2016; Zhang et al. 2012; Zheng et al. 2016). 
It is well established that utilising the additive has an influ-
ence on the contact angle measurement. In comparison with 
pure PVDF in the previous study, both of the membranes 
presented smaller contact angle. However, as depicted in 
Fig. 3, PVDF/AOT4-GO/TiO2 presented a higher contact 
angle value of 75.2 ± 0.24° (Fig. 3a) as compared to PVDF/
TC14-GO/TiO2 [65.4 ± 0.17° (Fig. 3b)]. This indicated that 
membrane’s hydrophilicity improved as the amount of GO 

Fig. 2   Micro-Raman spectra 
of the fabricated PVDF/AOT4-
GO/TiO2 and PVDF/TC14-GO/
TiO2 NF membrane

Fig. 3   Contact angle measure-
ment of the fabricated; (a) 
PVDF/AOT4-GO/TiO2 and 
(b) PVDF/TC14-GO/TiO2 NF 
membrane
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content in the PVDF/TC14-GO/TiO2 membrane increased. 
This was believed due to the utilisation of triple-tail TC14 
which provides an extra chain for GO and PVDF polymer 
interconnection (Lai et al. 2019). In addition, the abundance 
number of oxygen-containing functional groups of GO 
resulted in higher water molecule diffusion rate through the 
membrane caused by the hydrogen bond (Ai et al. 2018). As 
a result, the membrane becomes more hydrophilic and own 
a lower contact angle.

Further porosity measurement revealed that PVDF/TC14-
GO/TiO2 presented higher porosity (83.31%) as compared 
to PVDF/AOT4-GO/TiO2 (79.35%). This result was in good 
agreement with FESEM images of PVDF/TC14-GO/TiO2 
(Fig. 1f) which shows a bigger pore size than PVDF/AOT4-
GO/TiO2 (Fig. 1b). Triple-tail TC14 surfactant plays a cru-
cial role during the GO synthesis as a higher exfoliated GO 
amount was obtained compared to the double-tail AOT4 sur-
factant. Higher GO amount in PVDF/TC14-GO/TiO2 sample 
leads to higher porosity and bigger pore size which increased 
the mass transfer rate between the solvent and the non-sol-
vent during phase inversion (Zhu et al. 2017; Zinadini et al. 

2014). In addition, higher porosity of the PVDF/TC14-GO/
TiO2 was might be caused by lower casting solution viscos-
ity during the phase inversion process which then resulted in 
instantaneous demixing process (Ai et al. 2018). The contact 
angle and porosity value of the fabricated membranes are 
summarised in Table 2.

Water Flux of Fabricated Membranes Based 
on Different Operating Pressures

Pure water flux was measured to study the permeability 
of the prepared membranes. As presented in Fig. 4, water 
flux increased significantly with the increment of the 
operating pressure. As shown in Table 3, PVDF/TC14-
GO/TiO2 water permeability was observed to be three 
times higher (48.968 L/m2 h MPa) as compared to PVDF/
AOT4-GO/TiO2 (16.533 L/m2 h MPa) which was believed 
affected by its higher hydrophilicity and porosity. In addi-
tion, it also confirmed that higher water permeability of 
the fabricated NF membrane was achieved as GO content 

Table 2   Contact angle and porosity values of the fabricated NF mem-
branes

Membrane Contact angle (°) Porosity (%)

PVDF/AOT4-GO/TiO2 75.2 ± 0.24 79.35
PVDF/TC14-GO/TiO2 65.4 ± 0.17 83.31

Fig. 4   Water flux measurements 
of the fabricated NF membranes 
based on different driving pres-
sure level

Table 3   Water permeability of the fabricated PVDF/AOT4-GO/TiO2 
and PVDF/TC14-GO/TiO2 NF membranes

Membrane Water perme-
ability (L/
m2 h MPa)

PVDF/AOT4-GO/TiO2 16.533
PVDF/TC14-GO/TiO2 48.968
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increased. The utilisation of triple-tail TC14 surfactant 
was believed resulted in higher exfoliated GO content as 
well as hydrophilic functional groups (PVDF/TC14-GO/
TiO2 sample) as compared to double-tail AOT4 surfactant 
(PVDF/TC14-GO/TiO2 sample). This was also supported 
by the large macro-voids structure of PVDF/TC14-GO/
TiO2 (see FESEM images) which attracted and promoted 
the water molecules to pass through the membrane (Ai 
et al. 2018; Wang et al. 2018; Xia and Ni 2014). These 
results were also supported by membrane’s pore sizes and 
pure water flux for both membranes.

Dye Rejection Performance of the Fabricated NF 
Membranes

Based on dead-end cell measurement, PVDF/TC14-GO/
TiO2 showed slightly higher dye rejection efficiency 
(R) value (92.61%) as compared to PVDF/AOT4-GO/
TiO2 membrane (92.39%) as shown in Fig. 5. However, 
PVDF/TC14-GO/TiO2 possessed three times higher dye 
flux (91.106 L/m2 h) as compared to PVDF/AOT4-GO/
TiO2 (34.384 L/m2 h) (see Table 4). These results further 
confirmed that embedding triple-tail TC14-GO into the 
casting solution has improved the dye rejection as well as 
high permeability in comparison with double-tail AOT4-
GO. This was believed related to the extra chain intercon-
nection between GO and PVDF provided by triple-tail 
TC14 surfactant which resulted higher GO content in the 
PVDF/TC14-GO/TiO2 thus improved the hydrophilicity 
and porosity value. These results lead to the conclusion 
that the utilisation of a higher surfactant’s tail number in 
the GO synthesis process affected the dye flux and dye 
rejection efficiency.

Antifouling Properties of the Fabricated NF 
Membranes

Assessment of the fabricated NF membranes on long-term 
performance has been evaluated by their fouling. Filtration 
activity has caused the dye’s organic molecules deposited 
on the membrane surface then permeate into the membrane 
which then contributed to the membrane fouling (Nikooe 
and Saljoughi 2017). Antifouling characteristics of the 
prepared membranes were then studied through the FRR. 
Based on Fig. 6, the flux decline curve of PVDF/TC14-GO/
TiO2 decayed rapidly during the first 3 min before being 
stabilised gradually. Meanwhile, slower flux decline was 
observed for PVDF/AOT4-GO/TiO2 which indicated better 
antifouling properties (Zhu et al. 2017). In general, lower 
organic adsorption at the membrane surface makes it easier 
to be cleaned (Zhang et al. 2013). Before the membrane 
was cleaned, the pure water flux of PVDF/AOT4-GO/TiO2 
and PVDF/TC14-GO/TiO2 at the same pressure was 38.082 
and 100.137 L/m2 h, respectively. However, after the mem-
brane was cleaned, the FRR for PVDF/AOT4-GO/TiO2 was 
higher (166%) than PVDF/TC14-GO/TiO2 (119%), indicated 
an excellent organic molecules adsorption resistance (Wang 
et al. 2015). This result confirmed that the different GO con-
tent in both membranes clearly affects the FRR value. The 

Fig. 5   Dye rejection measurement of the fabricated NF membrane by using UV–Vis spectroscopy; (a) PVDF/AOT4-GO/TiO2 and (b) PVDF/
TC14-GO/TiO2

Table 4   Dye rejection performance of the fabricated nf membranes 
measured at a pressure of 2 MPa

Membrane Dye flux (L/m2 h) Final con-
centration 
(ppm)

Rejec-
tion rate 
(%)

PVDF/AOT4-GO/TiO2 34.384 0.760 92.39
PVDF/TC14-GO/TiO2 91.106 0.738 92.61
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lower FRR value presented by PVDF/TC14-GO/TiO2 was 
believed due to its large pores size which leading to some 
fouling blocked and adsorbed onto the membrane surface. 
Therefore, the volume available for passage of the permeate 
were then reduced (Coutinho et al. 2009).

Conclusions

In this work, PVDF/AOT4-GO/TiO2 and PVDF/TC14 -GO/
TiO2 NF membranes were successfully fabricated via NIPS 
method utilising customised double-tail AOT4 and triple-tail 
TC14 surfactants for GO synthesis via electrochemical exfo-
liation. Based on several measurements, it was found that 
the utilisation of a higher surfactant’s tail number resulted 
in larger macro-voids structure with higher membrane’s 
porosity and pore size. In addition, higher membrane hydro-
philicity was also achieved as the contact angle decreased. 
PVDF/TC14-GO/TiO2 presented three times higher water 
permeability (48.968 L/m2 h MPa) and dye flux (91.106 L/
m2 h). Moreover, its FRR high value (119%) indicated good 
antifouling performance. The obtained results suggest that 
the addition of TiO2 and different type of GO as additives 
play an important role to enhance the dye rejection and anti-
fouling performance.
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