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Abstract. The zinc doped nickel oxide (Zn:NiO) nanostructures with 0 at.% (UD), 1 at.% 

(1ZNO), and 2 at.% (2ZNO) of Zn concentrations were successfully deposited on the NiO 

seed-coated glass substrates. The films were successfully produced from two synthesis 

techniques: the sol-gel spin coating for NiO seed-coated and the solution immersion for the 

Zn:NiO nanostructures. The films were then pre-baked at 150 °Ϲ and subsequently annealed at 

500 °Ϲ. The Zn doping concentrations affecting NiO in terms of morphological, structural, and 

optical properties were investigated. The surface morphologies and cross-sectional images of 

the Zn:NiO nanostructures were observed by field emission scanning microscopy. The 

observation showed that the groups of nanoflower (NF), which were grown above the 

nanosheet (NS) array were gradually decreased with the increasing percentage of the Zn 

doping. The thickness of the NS also drastically decreases as the Zn dopant is increased. The 

thicknesses measured are 910 nm, 410 nm, and 100 nm for UD, 1ZNO, and 2ZNO, 

respectively. The X-ray diffraction analysis showed the Zn:NiO peak intensities were affected 

and decreased as the Zn doping is increased. Take into account the significant differences in 

the (200) plane, the crystal parameters were calculated. The dislocation density, interplanar 

spacing, lattice parameter, and unit cell volume increased as the Zn doping increased. 

Meanwhile, the average crystallite size reduces when the percentage of Zn doping is increased. 

This condition makes the Zn:NiO nanostructures are promising for sensing applications due to 

enhanced surface area. The strain and stress values of the Zn:NiO showed the tensile strain and 

compressive stress, respectively. The transmittance spectra showed the transparencies in the 

visible region within 400 to 800 nm wavelength increases when the percentage of Zn doping is 

increased. The average transmittance percentages are 32.1 %, 62.8 %, and 67.0 % for UD, 

1ZNO, and 2ZNO, respectively. The optical bandgap increases sharply as the Zn doping 

increased from 3.55 to 4.75 eV. 
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1. Introduction 

Nickel oxide (NiO) exhibits p-type semiconducting properties and has a wide bandgap within the 

range of 3.6 to 4.0 eV with cation vacancies [1-3]. In the past few years, NiO nanostructures have 

demonstrated outstanding features in their structural, electrical, optical, magnetic, catalytic, and 

electrochemical properties [2, 4-7]. It is widely used in many electronic sections and devices such as 

field-effect transistors [8], superconductors [9], solar cells [10], and sensors [11-13]. Many efforts 

have been employed to customize the properties of NiO nanostructures by doping with various 

elements. Among the transition metal elements that can be engaged for doping with NiO are ferrum 

(Fe), aluminium (Al), chromium (Cr), manganese (Mn), and zinc (Zn). Zn is identified to be an 

attractive element for NiO because the properties of NiO nanostructures can be further improved to be 

used in certain applications. For instance, Fahmi et al. reported on Zn doped NiO for thin films 

prepared by sol-gel spin coating [14]. They investigated the effect of Zn on the structural and optical 

properties for the application of humidity sensors. Fomekong et al. investigated the Zn doped NiO to 

improve the gas sensors for formaldehyde detection [15]. Rani et al. studied the Zn doped NiO 

nanocluster electrocatalysts for electrochemical water splitting applications [16]. In this work, the 

morphological, structural, and optical properties were considered to view the influence of the Zn 

dopant on NiO nanostructures. The Zn doped NiO (Zn:NiO) nanostructures are limited to the Zn 

concentration of 0 at.% (undoped named UD), 1 at.% (1ZNO), and 2 at.% (2ZNO). The nanostructures 

were synthesized by using two techniques, which are the sol-gel spin coating and immersion 

techniques. They were then annealed at 500 °Ϲ in an ambient environment. It can be suggested that 

these nanostructures have the potential of being employed in several types of sensors. 

 

2. Experimental Methods 

At first, NiO seed-coated was deposited onto the glass substrates by the sol-gel using the spin coating 

technique. The sol-gel preparation involved nickel acetate as the precursor, ethylene glycol monoethyl 

ether as the solvent, and diethanolamine as the stabilizer, where they were mixed to produce a 

solution. The solution was stirred for 2 hours at 400 rpm before depositing onto the glass substrates 

using a spin coater at 4000 rpm. Before finally annealed at 400 °Ϲ for 2 hours, the resulting NiO seed-

coated layer was pre-heated at 250 °Ϲ for 5 minutes. The spin-coating and pre-heating processes were 

repeated five times to improve and increase the seed-coated thickness. For the Zn:NiO nanostructures, 

the immersion technique was used. Each solution of NiO consists of nickel (II) nitrate hexahydrate, 

hexamethylenetetramine, and deionized (DI) water with different concentrations of Zn dopant. The 

dopant of Zn used is from zinc nitrate hexahydrate from Friendemann Schmidt. The solutions went 

through a sonication process using the ultrasonic bath and were stirred at 300 rpm using a magnetic 

stirrer at room temperature. Once both processes were completed, each solution containing UD, 

1ZNO, and 2ZNO was transferred to the respective Schott bottles with NiO seed-coated glass 

substrates were inside. The Schott bottles were immersed in a water bath instrument for 2 hours at a 

temperature of 95 ºC. After that, the Zn:NiO nanostructure samples were removed from the Schott 

bottles and rinsed with DI water. Then, the Zn:NiO samples were pre-baked for 15 minutes at 150 ºC 

before annealed in a furnace at 500 ºC for 1 hour. The surface morphological studies of the Zn:NiO 

nanostructures were characterized using field emission scanning electron microscopy (FESEM) 

(model: Hitachi SU-8030). The structural properties were analyzed by X-ray diffraction (XRD) 

(model: PANalytical X’Pert PRO). The optical studies were characterized using the ultraviolet-visible 

(UV-vis) spectrophotometer (model: Jasco/V-670 EX). 

 

3. Results and Discussion 

3.1. Morphological Properties 

As shown in Figure 1 (a) to (c), the FESEM images show the surface morphologies of the Zn:NiO 

nanostructures, which were grown on the NiO seed-coated glass substrates. As can be observed in 

Figure 1 (a), the surface morphology of the UD NiO shows the group of nanoflowers (NFs) was grown 

abundantly on the nanosheet (NS) array irregularly. The NF and NS structures of UD NiO at higher 

magnification are shown in Figure 1 (d) and (e), respectively. The observation of the highly porous NF 
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and NS structures are quite similar to the previous research works [11, 17, 18]. With the increase of Zn 

dopant percentage by 1 at.%, the number of NF began to decrease, as shown in Figure 1 (b). The 

condition becomes more pronounced with an increase of 2 at.% Zn as shown in Figure 1 (c), where the 

number of NF decreased drastically, and the NS array is increasingly visible. It can be said that, with 

the increasing of Zn doping percentage, the number of NF on the NS arrays decreased, and the 

morphology structures changed. The changes in the morphology of the synthesized nanostructures will 

also affect the optical properties [19-21]. 

The NS structure from a cross-sectional image of UD NiO is shown in Figure 1 (f). It can be seen that 

the NS has successfully grown above the NiO seed-coated substrate uniformly. The thicknesses of the 

Zn:NiO nanostructures were measured, and the values are 910 nm, 410 nm, and 100 nm for UD, 

1ZNO, and 2ZNO, respectively. These values indicate the thickness decreases crucially as the Zn 

dopant concentration is increased. As mentioned by Chen et al., the thicker NiO films can develop a 

precise microstructure, and the crystallite size becomes larger [22]. 

 

 
Figure 1. The surface morphologies of the (a) UD, (b) 1ZNO, (c) 2ZNO consists of NS and NF 

structures. The (d) NF and (e) NS structures of UD NiO. (f) The cross-sectional image of NS UD NiO. 

3.2. Structural Properties 

Figure 2 shows the XRD patterns of the Zn:NiO nanostructures, which were annealed at 500 °C for 1 

hour in the ambient environment. The observed peaks for all Zn:NiO nanostructures match with the 

polycrystalline NiO structure, which is indexed to the cubic β-NiO (JCPDS 47-1049). For the UD 

NiO, three peaks clearly observed at 2θ = 36.7 º, 42.7 º, and 62.5 º, which correspond to the (111), 

(200), and (220) crystal planes, respectively. It can be seen, the nanostructure of the UD NiO shows a 

good crystallization degree, which is represented by the sharpness and higher intensities of the peaks. 

Furthermore, the intensities of the peaks were gradually decreased as the Zn doping is increased. Only 

two weaker peaks were observed in both 1ZNO and 2ZNO samples that correspond to (111) and (200) 

crystal planes. Those peaks show lower intensities and broader compared to the peaks of UD NiO. The 

broad peak between 20 º to 40 º corresponds to the glass substrate [23]. 

The structural properties obtained from the XRD results are in parallel with the research reported by 

Manouchehri et al., where NiO crystallization is strongly influenced by zinc dopant concentration 

percentage [1]. More precisely, they said that when the Zn doping percentage increases, the crystalline 

structure of NiO gradually starts to vitiate. This behavior may be related to the crystal defects induced 

by the Zn doping increased. Besides, no other phases were detected on the pattern, which confirmed 

that the Zn:NiO nanostructures have a pure phase of the cubic NiO [24]. Manouchehri et al. also 

highlighted that the increases of Zn dopant concentration percentage do not change the 
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crystallographic structure of NiO due to the ionic radii of Ni and Zn are more or less the same [1]. The 

ionic radii of Ni and Zn are 0.078 nm and 0.074 nm, respectively [25]. It causes Ni ions to be easily 

replaced with Zn ions without significant lattice distortion. 
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Figure 2. The XRD patterns of the Zn:NiO nanostructures at different dopant concentrations 

 

By referring to the most significant plane of (200), the other crystal parameters were calculated and 

shown in Table 1. The crystallite size (D) can be calculated using the Scherrer formula, as stated in 

Eq. (1). 

𝐷 =
𝑘𝜆

𝛽 𝑐𝑜𝑠𝜃
 (1) 

 

where k is a constant which is taken to be 0.94,  is the X-rays wavelength (1.542 Å), β is the full 

width at half maximum (FWHM), and θ is the angle of diffraction. From the calculations, the largest 

of D (21.4 nm) is owned by UD NiO, while 2ZNO owns the smallest of D (12.2 nm). The result shows 

that D decreases when the Zn doping is increased. According to Rani et al., the piecemeal decrease of 

D is because of the excess amount of dopant that can drag on the boundary motion and further slow 

down the kinetic system for the growth [16]. The decrease in D as the dopant concentration increased 

may also be attributed to the slightly smaller Zn
2+

 ion atomic radius than the NiO host. The dislocation 

density (δ), interplanar spacing (d), lattice parameter (a), and unit cell volume (V) increase as the Zn 

doping is increased. Besides, the positive strain and negative stress values of these Zn:NiO 

nanostructures are considered as tensile strain and compressive stress, respectively [26, 27]. 

 

Table 1. The crystal parameters of the Zn:NiO nanostructures at the (200) plane 

 

Sample 

 

2θ 

(°) 

FWHM, 

β 

(°) 

Dislocation 

density, δ 

× 10
15

 

(Lines/m
2
) 

Interplanar 

spacing, 

d 

(Å) 

Lattice 

parameter, 

a 

(Å) 

Unit cell 

volume, 

V 

× 10
-29

 

(m
3
) 

Strain, 

ε 

(%) 

Stress, 

σ 

(GPa) 

Crystallite 

size, D 

(nm) 

UD 42.734 0.4167 2.18 2.1162 4.2323 7.58 1.32 -4.26 21.4 

1ZNO 42.662 0.6263 4.94 2.1196 4.2391 7.62 1.48 -4.79 14.2 

2ZNO 42.525 0.7286 6.68 2.1261 4.2522 7.69 1.80 -5.80 12.2 

3.3. Optical Properties 

The optical properties of the Zn:NiO nanostructures are presented in Figure 3. As observed in the 

transmittance percentage over wavelength (300 - 800 nm) in Figure 3 (a), the transmittance in the 
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visible region increases drastically as the Zn dopant concentration is increased. A similar result was 

observed on the NiO thin film by Fahmi et al., where the transmittance percentage increased from the 

undoped to 2 at.% Zn [14]. In our work, the average transmittance values in the wavelength range 

between 400 to 800 nm were calculated where the values are 32.1 %, 62.8 %, and 67.0 % for the UD, 

1ZNO, and 2ZNO, respectively. These values were then plotted in Figure 3 (b). The average 

transmittance plot clearly shows an upward trend along with an increase in Zn doping. The results 

show that the UD has the lowest transparency, while the 2ZNO has the highest transparency in the 

visible region. These results show the transparency is closely related to the thickness of the respective 

films, where the thinnest has the highest transmittance percentage. In contrast, the thickest has the 

lowest transmittance percentage. 

Figure 3 (c) shows the optical bandgap (Eg) of the Zn:NiO nanostructures, which were estimated by 

Tauc’s plot. The Eg values obtained were 3.55 eV, 4.50 eV, and 4.75 eV for UD, 1ZNO, and 2ZNO, 

respectively. The Eg values revealed the abrupt increases as the percentage of the Zn doping increased. 

It shows that the optical properties of the NiO are significantly affected by the Zn doping 

concentration.  According to Goel et al., the crystallite size changes may change the bandgap [2]. It 

can be seen through the bandgap values of 1ZNO and 2ZNO is outside the range of 4.0 eV. The 

obtained results can be due to many factors, such as the sharply reduced film thicknesses from 910 to 

100 nm. In addition, the changes in the crystal structure as the Zn doping increased also caused the 

bandgap to increase [28]. 
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Figure 3. The (a) transmittance spectra and (b) 

summarize of average transmittance in the visible 

region of the Zn:NiO nanostructures. (c) The Tauc’s 

plots of the Zn:NiO nanostructures for optical bandgap 

estimation 
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4. Conclusion 
The Zn:NiO nanostructures were grown on the NiO seed-coated glass substrates at different Zn 

concentrations by the sol-gel spin coating and immersion techniques. We have studied the changes in 

the NiO characteristics in terms of morphological, structural, and optical properties when doped with 

different concentration percentages of the Zn dopant. The growth of nanoflowers on the nanosheet 

arrays was gradually reduced with the increases of the Zn dopant percentage. The XRD patterns of the 

Zn:NiO showed significant influence on the crystallinity such as dislocation density, interplanar 

spacing, lattice parameter, and unit cell volume that increased as the Zn doping is increased. The 

crystallite size reduced as the Zn dopant increased. The strain and stress values showed the tensile 

strain and compressive stress due to the positive and negative signs, respectively. The optical 

properties revealed that the average transmittance value increased with the increase in the Zn dopant 

percentage. The bandgap energies were estimated at 3.55 eV, 4.50 eV, and 4.75 eV for UD, 1ZNO, 

and 2ZNO, respectively. In conclusion, these Zn:NiO nanostructures may have potential in 

applications of sensors such as gases and humidity due to their impressive properties in the 

morphologies. The highly porous Zn:NiO nanostructures enable a faster response during the 

adsorption and desorption processes in sensing activity. The crystallite size that becomes smaller when 

Zn doping is increased can provide a larger surface area and suitable for sensing activity. 
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