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Abstract
This paper presents the effects of operating parameters on the photocatalytic degradation of methylene blue using flowerlike
rutile-phase TiO2 films synthesised by a hydrothermal method. The findings show that numerous parameters such as the
catalyst morphology, the presence of oxygen vacancy/Ti3+ surface defects, initial pH of methylene blue solution, active
species, and initial concentration of methylene blue influence the photocatalytic degradation of the dye. Based on the results
obtained, the presence of oxygen vacancy/Ti3+ surface defects act as an electron trap that helps generate more electrons and
holes, which contributes to the enhancement of the photocatalytic activity of the TiO2 film. This study reveals that the
optimum concentration of Ti precursor was obtained at 0.10 M, which produced a flowerlike morphology with pristine
rutile-phase that reached 42% methylene blue dye degradation. The effectiveness of the optimised film was boosted by 18%
degradation by adjusting the initial pH of the methylene blue solution to 12. Under such conditions, the enhancement of the
electrostatic attraction between the negatively charged TiO2 and the methylene blue molecules improved the degradation. No
severe deactivation of the catalyst was found even after five photocatalysis reaction cycles. This study also demonstrates that
there are multiple parameters involved in optimising the photocatalytic activity of TiO2.
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Graphical Abstract
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1 Introduction

Serious environmental and energy emissions issues are
becoming some of the most challenging problems in the
world. Some industries use synthetic dyes that are untreated
and combined with water supplies, such as textiles, plastics,
printing, etc. Synthetic dyes can cause health problems for
humans and the environment [1]. One of the industrial dyes
that is a cationic dye is methylene blue (MB). It is one of the
most common dyeing materials for wood, silk, and cotton.
A variety of illnesses, such as complications with the
digestive and respiratory tracts, as well as nausea, vomiting,
and profuse sweating, can be caused by excessive amounts
of MB in our water resources [2]. There are diverse
approaches of treatment used to remove the dye from
wastewater.

A variety of treatment processes are commonly used to
treat different contaminants, such as chemical oxidation,
biological processes, coagulation, membrane filtration, and
advanced oxidation processes (AOPs) [3–5]. For instance,
AOPs have an immense capacity to handle various types of
pollution and can minimise the production of secondary
toxins as it produces carbon dioxide (CO2) and water (H2O)
[6]. In the process of photocatalysis, superoxide anion and
hydroxyl radical generation will attack organic compounds
in the wastewater in the presence of light of appropriate
wavelengths. These organic compounds can be degraded
into non-hazardous compounds [7].

Among other semiconductors, such as zinc oxide and
copper oxide in photocatalysis, TiO2 has promising poten-
tial. Chemical stability, low cost, reusability, and chemical
inertness are some of the advantages of TiO2 [8–10]. TiO2

occurs in three crystalline forms, which are anatase, rutile,
and brookite. These all have large band gaps, with values of
3.2 and 3.0 eV being reported for anatase and rutile,
respectively, whereas the corresponding value for brookite
is scarcely reported due to processing difficulties [11, 12].

However, a few studies have reported that the band gap
values of brookite range from 3.1 to 3.4 eV [13]. Rutile has
a more thermodynamically stable phase and smaller band
gap compared to anatase [14]. However, the anatase phase
has superior photocatalytic behaviour compared to rutile
[15, 16]. The origin of the low photocatalytic activity of the
TiO2 rutile phase may be due to its low surface area
resulting from the synthesis route that induces aggregation
by thermal treatment at high temperatures (400–1000 °C)
[17]. Moreover, the main active facet of rutile is (110)
which has a low surface energy that hinders the adsorption
and degradation of molecules [18]. Hence, fabricating TiO2

with high-activity facets is very challenging.
Numerous methods have been reported for the fabrica-

tion of TiO2 film, such as spray pyrolysis [19], hydro-
thermal [20], spin coating [21], and so on. Among these
methods, a simple, fast, energy-saving and cost-effective
low-temperature hydrothermal method is easily adjusted to
the TiO2 morphology with a homogeneous film distribution
system [22]. By using the low-temperature hydrothermal
process, the rutile phase can be formed without additional
thermal treatment [23]. In recent decades, various TiO2

morphologies such as wires, rods, flower-like, and tubes
have been developed [24]. Hydrothermal synthesis with
acidic solution has the ability to produce a rutile-phase TiO2

flowerlike structure [25]. The flowerlike structure with
stacking growth helps to increase surface area during
growth [26]. The three-dimensional flowerlike structure not
only reflects light many times, but also improves the
amount of incident light dispersion for best light harvesting
to enhance the photocatalytic performance compared to 1D
nanorod structures [27–29]. The numerous petals of the
flowerlike structure also have more active sites for photo-
catalysis. Moreover, a solid film can be formed with the
formation of a flowerlike rutile-phase structure on top of a
fluorine-doped tin oxide (FTO) substrate [26]. Immobilisa-
tion of the catalyst will avoid the need for any post-
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separation processes between the catalyst and treated was-
tewater [30, 31], and prevent excessive solids from seeping
into the water stream that can be detrimental to aquatic life.

The efficiency of photocatalysis is strongly dependent on
the number of operating parameters that control the pho-
todegradation of the organic molecule. Photocatalytic
degradation of coloured dyes such as MB is affected by a
number of parameters, such as the initial solution pH, cat-
alytic morphology, presence of oxygen vacancy/Ti3+ sur-
face defects, and the initial concentration of MB. The
surface charge properties of TiO2 are also dependent on pH
change due to the amphoteric behaviour of the TiO2 semi-
conductor [32]. According to Ling et al. [33], electrostatic
interactions between negative TiO− surface sites and
methylene blue cations under basic conditions lead to strong
adsorption with correspondingly high degradation rates.
Hamed et al. [30] claimed that the photocatalytic degrada-
tion of MB is significantly influenced by electron trapping
which occurs in the presence of oxygen vacancy/Ti3+ sur-
face defects that can prolong the lifetime of electrons and
holes. Zhang et al. [11] claimed that the anatase phase has a
better photocatalytic activity compared to the rutile phase
due to anatase having a higher surface adsorption and lower
recombination rate than rutile. Lin et al. [31] claimed that
bicrystalline TiO2 has excellent interface contact and opti-
mised band structure which enhances photocatalytic activ-
ity. However, the fabrication of a bicrystalline material with
controlled anatase and rutile proportions is complex [31].
Feng et al. [34] discovered that rutile (110) and (111)
exposed facets can enhance the separation of electrons and
holes that can improve the photocatalytic activity. These
studies show that there is still controversy in the literature
around optimising the photocatalytic activity of the rutile
phase TiO2 films that can have a major impact on photo-
catalytic activity and degradation of organic wastes.

The aim of this study was to enhance the photocatalytic
activity of the rutile phase. Thus, several precursor con-
centrations were used to develop a flowerlike rutile-phase
TiO2 film via a low-temperature hydrothermal method. The
remarkable activity of the resulting material with (101)
active facets is discussed, including the impact on MB
photodegradation of process parameters such as morphol-
ogy, active surface species, initial concentration of MB, and

solution pH. The reusability of the film, the possible for-
mation of flowerlike rutile-phase TiO2, and the mechanism
for photocatalytic degradation of MB are also discussed in
this paper. Even though TiO2 is a common photocatalyst,
the fabrication method and research results in this work
have important reference values in the photocatalytic field.
Table 1 shows a summary of previous studies on TiO2 films
used for photocatalytic MB degradation. It can be seen that
the flowerlike rutile-phase TiO2 film produced in this work
showed excellent photocatalytic activity compared to
alternative rutile or mixed-phase materials.

2 Experimental method

2.1 Materials

Hydrochloric acid (HCl) was obtained from JT Baker with
36–38% purity. Titanium (IV) butoxide (TBOT) and FTO-
coated glass substrates were purchased from Sigma Aldrich.
Methylene blue (MB), benzoic acid, potassium persulfate,
and disodium ethylenediaminetetraacetate (EDTA–2Na)
were obtained from Wako. All chemicals were used without
any purification.

2.2 Preparation of flowerlike rutile-phase TiO2 film

Rutile-phase TiO2 film was fabricated by using a simple
hydrothermal method. The FTO substrate was cut into
sections with dimensions of 35 × 35 mm and subsequently
cleaned with acetone, ethanol, and deionised (DI) water
with sonication. Next, 80 mL of HCl (0.016M) was mixed
with 80 mL of DI water and stirred for 5 min. TBOT was
then added dropwise to achieve overall Ti(IV) concentra-
tions of 0.05 to 0.15M and stirred until the solution was
clear. The FTO substrate (conducting surface upwards) was
placed in a Teflon-lined hydrothermal autoclave (300 mL).
Then, the prepared TiO2 solution was poured into the
autoclave and placed into an oven for 10 h at 150 °C.
Figure 1a shows the illustration of the Teflon-lined hydro-
thermal autoclave. After cooling, the prepared film was
washed several times in DI water and dried in the oven for
30 min at 100 °C. The films were labelled as T-0.05 M,

Table 1 Comparison of studies
of TiO2 film for MB degradation

Synthesis method Phase type Percentage
degradation (%)

Degradation duration
(minutes)

Ref

DC reactive magnetron
sputtering

Mixed phase 30 40 [57]

Dip-coating technique Anatase 100 480 [58]

Ball milling Rutile 64 540 [59]

Hydrothermal method Rutile 38 180 [60–62]

Hydrothermal method Rutile 60 300 This study
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T-0.07 M, T-0.10M, T-0.12 M, and T-0.15 M according to
the precursor molarities used for each sample.

2.3 Characterisations

For X-ray diffraction (XRD), PANalytical X’Pert Powder at
2θ angles from 20° to 80° was used to investigate the crystal
structure of the TiO2 films. Raman spectroscopy (Xplora
plus model BX41TF) was used to confirm the structural
property of the rutile-phase TiO2 film. Scanning electron
microscopy (SEM; JEOL JSM-7600 F) was used to analyse
the surface morphology of the samples. Transmission
electron microscopy (TEM; JEOL JEM 2100 F) with
accelerating voltage of 200 kV was used to observe the
crystallite size and obtain high-resolution images of the
films. The defect state of the TiO2 samples was investigated
via photoluminescence spectroscopy (Jasco spectro-
fluorometer FP-8600). UV–vis DRS spectroscopy (SHI-
MADZU UV 3600 plus) was used to examine the optical
properties of the films. XPS (SHIMADZU AXIS ULTRA
DXD) was utilised to investigate the chemical state of
surface species in the films.

2.4 Photodegradation of MB

The photocatalytic activity of the TiO2 films was tested via
MB degradation using a xenon lamp (300W) operating
over a broad wavelength range (300–600 nm) and located
21 cm from the photocatalyst. The TiO2 film was placed in a
beaker. Then, the film was exposed to light for 30 min to
remove any contamination on top of the TiO2 surface to
improve the adsorption of MB. Then, 100 mL of MB
solution was poured and stirred under dark conditions for
1 h to achieve adsorption–desorption equilibrium. The

initial pH of the solution was 8. Subsequently, photo-
catalytic experiments were carried out for 5 h with con-
tinuous stirring. MB solution (3 mL) was collected at 1 h
intervals. For exploring the effects of pH, the pH was varied
from 3 to 12. Hydrochloric acid (HCl) or sodium hydroxide
(NaOH) was used to adjust the pH as required. EDTA–2NA
was used as the scavenger for superoxide anions, potassium
persulfate as the scavenger for hole ions, and benzoic acid
as the scavenger for hydroxyl radicals. For scavenging
analysis, sufficient scavenger was added to the 100 mL MB
solution to achieve a scavenger concentration of 1 mM.
Figure 1b illustrates the photocatalysis reactor for the
experiment. The reusability experiment was carried out
using the T-0.10M film to study the stability of the film
after 5 runs with 5 ppm concentration of MB with the same
TiO2 film. The dye degradation was calculated by using Eq.
(1):

Dye degradation %ð Þ ¼ Ao � At=Aoð Þ � 100 ð1Þ
where Ao is initial absorbance and At is absorbance at time t.
The absorbance of MB was read at 664 nm.

3 Results and discussion

3.1 Crystallinity and chemical state of TiO2 film

The XRD patterns of TiO2 films prepared using different
TBOT concentrations are shown in Fig. 2a. The XRD
patterns demonstrate that the hydrothermal synthesis results
in the creation of pure rutile-phase TiO2 (JCPDS file no. 98-
008-0842) without the need for subsequent calcination. The
peaks observed at 2θ values of 27.38°, 36.10°, 41.24°, and
54.32° are well matched to the (110), (101), (111), and
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Fig. 1 a Hydrothermal processing of flowerlike rutile films, b schematic illustration of the photocatalytic reactor used
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(211) planes, respectively, of rutile TiO2 [35, 36], demon-
strating the polycrystalline nature of the sample. The
removal of the calcination step prior to the formation of the
rutile-phase may prevent the possibility of morphological
damage to the surface, leading to a reduction in the active
surface region. The similar lattice structures of FTO and
TiO2 also helps to provide growth sites for rutile-phase TiO2

without the assistance of a rutile seed layer of TiO2, since
the TiO2 rutile-phase has a tetragonal structure similar to
that of FTO (FTO: a= b= 0.4687 nm; rutile: a= b=
0.4594 nm) [37]. At a precursor concentration of 0.05M,
the film exhibited preferential (101) orientation, with no
flowerlike structure being obtained (see below) [35].

Using the Debye–Scherrer equation with the major peak
of the rutile phase at 2θ= 27.38°, the crystallite size of
rutile-phase TiO2 was determined as follows:

D ¼ kλ=β cos θ ð2Þ
where D is the crystallite size, k is the shape factor (k=
0.94), λ is the wavelength of the X-ray radiation (Cu Kα=
0.1542 nm), β is full-width at half-maximum (FWHM), and
θ is the angular position of the diffraction peaks.

The measured FWHM, crystallite size, lattice strain and
d-spacing obtained at different TBOT concentrations are
shown in Table 2. The findings indicate that as the TBOT
concentration increased, the crystallite size decreased. This
result is in line with the analyses by Tran et al. [36], where
the exposed rutile (110) plane appears to have a larger
surface area. The increased FHWM value indicated a
decrease in the crystallite size, the increasing FWHM value
may also be influenced by lattice strain in the TiO2. The
lattice strain of the sample was estimated by using the
Williamson–Hall relation [38]:

β cos θ ¼ 4ε sin θ þ kλ

D
ð3Þ

from the slope of β cos θ vs 4 sin θ. Here, D and ε are the
average crystallite size and lattice strain, respectively. As
shown in Table 2, the lattice strain decreased with
increasing precursor solution concentration from 0.07 to

0.10M and then increased with further increases in TBOT
concentration, due presumably to differences in the density
of intrinsic defects (such as Ti4+ and/or F+ oxygen vacancy
defects) in the samples [39]. These results suggest that a
TBOT precursor concentration of 0.10M may be optimal
for controlling the growth of rutile-phase TiO2 films under
the conditions used in this study.

The Raman spectra obtained from the films are also
consistent with the formation of pure rutile-phase TiO2 (Fig.
2b). The spectra all exhibit three well-defined bands at 116,
453, and 617 cm−1, which are associated with the rutile-
phase TiO2 [40], consistent with the XRD patterns
(although it must be noted that Raman spectroscopy probes
short-range order whereas XRD probes long-range order).
No peaks attributable to anatase or brookite are evident. The
key Raman modes are assigned as follows: 116 cm−1

(O–Ti–O symmetric bending vibration, B1g); 244 cm−1

(multi-phonon process); 453 cm−1 (O–Ti–O symmetric
stretching vibration, Eg); and 617 cm−1 (O–Ti–O anti-
symmetric bending vibration, A1g) [41].

The XPS spectra of T-0.1M (with binding energies
references to that of C 1s) clearly reveal the presence of
Ti3+ surface sites (Fig. 3). The Ti 2p appears as a
doublet, with a splitting of 5.7 eV (Fig. 3a). Band fitting
revealed that the Ti 2p profile consisted of four peaks
attributed to Ti4+ (major components, 460.2 and
465.9 eV) and Ti3+ (shoulders at 459 and 464.8 eV) [42],
consistent with the presence of Ti3+ surface defects in
the film. In order to boost the photocatalytic activity of
rutile, (111) and (110) facets is important because this
facet will act as the oxidative and reductive site [43].
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Table 2 FWHM, crystallite size, lattice strain, and d-spacing of films
obtained using different TBOT concentrations

Sample β (FWHM) D (nm) Lattice strain d-spacing (Å)

0.07M 0.1476 116 0.00204 3.2502

0.10M 0.1968 87 0.00108 3.2525

0.12M 0.2952 58 0.00281 3.2556

0.15M 0.492 35 0.00427 3.2560
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With the co-existence of Ti3+ in the flowerlike rutile-
phase TiO2, the photocatalytic efficiency of rutile TiO2

can be further enhanced by increasing the separation of
photogenerated electron–holes, thereby limiting the rate
of recombination.

3.2 Morphology of TiO2 Film

FESEM and HR-TEM were used to examine the mor-
phology of the TiO2 films. Figure 4 shows significant
morphological dependence of TiO2 synthesised using dif-
ferent TBOT concentrations. The TiO2 film deposited using
the 0.05M TBOT precursor was composed of oriented rod-
like crystallites with a mean height of 3.28 μm. A flowerlike
structure appearing at the top of the rods with a mean height
of 19.8 μm at 0.07M TBOT precursor. As the TBOT con-
centration was increased to the optimum concentration
(0.10 M), a clearer growth of more petals was observed due
to the rapid development of TiO2 flowers stacked on each
other with maximum coverage of the rod. The height of the
rods and the flowers was 33.9 μm. Further increases in
TBOT concentration led to a reduction in the height of the
rods and flowers and disrupted the flowerlike structure. As
TBOT concentration was increased to above the optimal
concentration, competition between adjacent rods for the
available precursor increased and impeded the growth of
TiO2 [32].

The microstructure of the T-0.10M sample was further
investigated using HR-TEM. Figure 5a–c shows that there
was a bundle of single nanorods in each petal of the flowers
observed in the FESEM images, which was in the range of
90–200 nm. The nanorods were approximately 7 nm in size.
These nanorods appeared to bond together in a particular
direction to form the microrod petals for the flowerlike
structure. The tip of the rods had a prismatic shape with
(101) facets as shown in Fig. 5c. The polycrystalline
structure was revealed in the bulk of the rods in Fig. 5d. The
d-spacing values for planes (110), (101), (111), and (211)
are 3.25, 2.48, 2.18, and 1.68 Å, respectively. These values
agree well with the results obtained via XRD. The different
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samples also underwent wettability analysis. Fig. S1 shows
the wettability properties for films deposited using different
concentrations of titanium precursors. The different
morphologies lead to differences in the wettability of the
films. The details are provided in the Supplementary
Information.

3.3 Optical properties of TiO2 film

The reflectance of the material was investigated with
UV–vis reflectance spectroscopy. Figure 6a shows that all
the samples have good absorbance properties in the UV
region. The reflectance of the light in the UV region
decreased with increased TBOT concentration. The band
gaps were determined using Tauc plots to be 3.36, 3.31,
3.21, 3.12, and 3.06 eV for T-0.05M, T-0.07 M, T-0.10 M,
T-0.12 M, and T-0.15 M, respectively, as shown in Fig.
6b–f. When the TiO2 film was exposed to light, the Ti3+ and
oxygen vacancy defect formed a mid-gap state [44]. From
the dependence of the band gap on film thickness, it can
also be clarified that the band gap energy decreases as film
thickness increases. This may be due to increased TiO2 film
surface area, in which more electrons and holes were cre-
ated when the film is thicker [45].

Figure 7 presents the photoluminescence spectrum for
the T-0.10 M sample. In order to investigate electron

recombination in the UV spectrum and visible spectrum, the
excitation wavelength was set at 320, 420, and 500 nm. The
three major levels inside the band gap at 320 nm (UV
spectrum) consist of self-trap excitation, surface state and
oxygen vacancy, and Ti3+ [46]. Emissions peaked at
approximately 2.94, 2.74, 2.65, 2.57, 2.52 and 2.06 eV (Fig.
7a). The surface-state emission induces other emission
peaks. The surface state is a shallow trap situated within the
catalyst’s band gap near the absorption band edge and
functions as an electron trap that can induce an emission at a
higher wavelength [47]. The oxygen vacancy-Ti3+ surface
defect condition, which is located at about 0.7 eV below the
conduction band, is responsible for the emission peak at
2.06 eV [48, 49]. This state is created by transferring the
electron in an oxygen vacancy to the adjacent Ti atom [50].
Emissions in the visible region are triggered by the
recombination of the electron and hole at the oxygen
vacancy-Ti3+ surface defect state. This state traps the
electron, thus inhibiting recombination with the hole. Two
emission peaks at 455 and 534 nm were observed under
420 nm excitation. Even though the excitation wavelength
was less than the band gap energy of the TiO2 sample, a
strong emission peak was observed at 455 nm (2.72 eV).
This outcome is attributed to the photo-excited electron
falling into oxygen vacancy-Ti3+ surface defect states under
the band gap energy [50].
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3.4 Photodegradation of MB

For MB degradation, the efficiency the TiO2 films made
using different TBOT concentrations was investigated. The
MB solution had an initial pH of 8 and the MB con-
centration was 5 ppm. An experiment without TiO2 film
(photolysis) was also performed in the presence of light
irradiation. The result shows only 18% photolysis degra-
dation occurred, while T-0.10M film obtained a maximum
of 42% dye degradation, followed by T-0.15 M with 37%,
T-0.12 M with 35%, T-0.07 M with 28%, and T-0.05 M
with 25% for 5 h of photodegradation. Compared to powder
catalysts, the dye degradation using the TiO2 films was less
efficient, but post-separation after treatment resulted in a

more beneficial and cost-effective treatment. A summary of
the percentage of dye degradation for films prepared using
different TBOT concentrations is shown in Fig. 8a. These
findings can be explained by the fact that in dye degrada-
tion, oxygen vacancy and Ti3+ defect play a significant role.
A shallow trap was introduced by this defect that could
inhibit electron and hole recombination [47]. Surface area
and crystallinity are other key factors. The rods inside the
flowers had a major effect that contributed to the dispersion
of light, allowing the incident light to be scattered and more
effectively absorbed and utilised within the film and be
absorbed during the photocatalytic process [51], thus
enhancing the mobility of the electrons in the TiO2 film
[52]. The stack effect creates a gap between the structural
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components of the flowers and provides a path for water to
diffuse within the film while providing more active areas
between surface TiO2 and wastewater for photocatalytic
action. These factors are consistent with previous studies
[15]. The kinetic analysis of the effect of different TBOT
concentrations on their photocatalytic behaviour was con-
ducted with the assistance of broad-spectrum irradiation.
The Langmuir–Hinshelwood (L–H) model was used to
analyse the kinetic rate of heterogeneous photocatalysis for
the degradation of an organic compound [53]. The L–H
model formula is expressed in Eq. (3):

ln
C0

Ct
¼ Kappt ð4Þ

where C0 and Ct are the dye degradation at time 0 and time
t, respectively, while kapp is the apparent pseudo-first-order
rate constant.

Figure 8b shows the graph ln (C0/Ct) vs irradiation per-
iod for MB degradation using various catalysts, confirming
that the pseudo-first-order was followed by the reactions. As
shown in Table 3, the maximum rate constant was observed
for the T-0.10M film (Kapp= 0.183 × 10−2 min−1), with
decreasing rate constants evident for the films produced at
higher and lower TBOT concentrations. This data can be
correlated with the FESEM images (Fig. 4) which showed
that the open flowerlike structure progressively formed as
the TBOT concentration was increased from 0.05 to 0.1 M

was then transformed into a more tightly packed
cauliflower-like morphology with further increases in
TBOT concentration.

The optimum rutile film (T-0.10 M) was further studied
for important parameters affecting MB photodegradation,
such as MB concentration, pH, active species, and film
reusability. Another important parameter in photocatalytic
behaviour is pH. The pH determines the photocatalyst’s
surface charge. When the solution’s pH is at or below the
isoelectric point, adsorption of the dye is minimal; the
photocatalyst surface is charged positively below the iso-
electric point and retains a negative charge above it [54]. In
analysing the surface charge of rutile-phase TiO2, the pH
ranges were set from acidic to alkaline. The dye degradation
at different pH is shown in Fig. 8c. At pH 12, the degra-
dation increased to 60%, while the lowest degradation was
11% at pH 3. This phenomenon is explained by the

Table 3 Dye degradation and kapp value for various samples

Dye degradation
after 5 h (%)

Kapp (×10
−2

min−1)
R2 value

TBOT
concentration
(M)

Photolysis 18 0.001 0.964

0.05 25 0.098 0.996

0.07 28 0.110 0.997

0.10 42 0.183 0.994

0.12 35 0.143 0.992

0.15 37 0.156 0.990
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amphoteric behaviour of the rutile-phase TiO2 film during
the reaction. Jalil et al. reported that for rutile-phase TiO2,
the point of zero charge (pHzpc) is pH 6 [55]. Uptake of the
(positively charged) MB is also enhanced at pH greater than
the pHzpc [56]. This result is consistent with those reported
by Ling et al., who noted that the electrostatic interaction
between negative TiO− and MB cations contributes to a fast
degradation rate due to strong adsorption of the dye [33].
The effects of MB concentration, active species analysis
and reusability analysis for the flowerlike rutile-phase TiO2

films were also analysed; further details are provided in
Supplementary information.

4 Conclusion

Rutile-phase TiO2 films with a flowerlike morphology were
successfully fabricated on FTO substrates by using a hydro-
thermal method. To obtain the optimised flowerlike morphol-
ogy, the Ti(IV) concentration in the precursor solutions used to
deposit the films was varied. Under all conditions used in this
study, the TiO2 films obtained consisted of a pure rutile-phase,
as shown by Raman spectroscopy and XRD analysis. The
flowerlike morphology was transformed into a cauliflower-like
morphology as the precursor concentration increased. PL and
XPS analysis confirmed the existence of Ti3+ and oxygen
vacancy defects in the optimised coating.

It was shown that films obtained from precursor solutions
containing 0.10M Ti(IV) has the highest MB degradation
(42% over 5 h), which is attributed to the intriguing flow-
erlike morphology of the film, together with the presence of
oxygen vacancy/Ti3+ surface defect sites. Furthermore, the
presence of Ti3+ surface defect and oxygen vacancy intro-
duced the shallow level, which helped to trap photo-
generated electrons and prolong the lifetime of the electron/
hole pair that mediates dye degradation. The MB degrada-
tion was further improved up to 60% at pH 12 at 5 ppm MB
concentration, due to electrostatic interactions between the
negatively charged TiO2 surface and MB cation which
enhanced the uptake of MB on the surface of the photo-
catalyst. Of the active species potentially contributing to the
photocatalytic activity, hydroxyl radicals were identified as
the most significant based on scavenging studies. The reu-
sability of the optimised photocatalyst was tested, demon-
strating that it retained around 90% of its initial activity
even after five cycles.

The flowerlike rutile-phase TiO2 film has significant
potential to enhance conventional approaches used in
industrial wastewater treatment.
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